Math, asked by Anonymous, 9 months ago

Answer the question ​

Attachments:

Answers

Answered by Blaezii
31

Answer:

Proved!

Step-by-step explanation:

Given :

\sf \left(\;\dfrac{1 + tan^2}{1 + cot^2A}\right)=\left(\dfrac{(1 - tanA}{1 - cotA)^2}\right)^2 = tan^2A

To Prove :

\sf \left(\;\dfrac{1 + tan^2}{1 + cot^2A}\right)=\left(\dfrac{(1 - tanA}{1 - cotA)^2}\right)^2 = tan^2A.

Solution :

L.H.S  :

1 + tan² A/1+cot²A

⇒ (1 + Sin²A /Cos²A)/(1 + Cos²A/Sin²A)

⇒ [(Cos²A + Sin^2A)/cos²A)/(Sin²A + Cos²A)/ Sin²A

⇒ (1 / Cos²A) / (1 / sin²A)

⇒ 1 / Cos²A × sin²A / 1

⇒ sin²A / cos^2A

⇒ tan²A

R.H.S :

⇒ (1 - tanA / 1-cotA)²

⇒ (1 + tan²A - 2tanA) / (1 + cot² - 2cotA)

⇒ (sec²A  - 2tanA) / (Cosec^2A - 2cosA / sinA)

⇒ (sec^2A-2 × sinA / cos A) / (cosec^2A - 2cosA/sinA)

⇒ (1/cos²A-2sinA/cosA)/(1/sin²A-2cosA/sinA)

⇒ [(1-2sinAcosA)/cos^2A]/[(1-2cosAsinA)sin²A]

⇒ (1-2sinAcosA)/cos^2A × sin²A / (1-2sinAcosA)

⇒ sin²A/cos²A

⇒ tan²A

R.H.S :

⇒ tan²A

Hence, Proved,

\sf \left(\;\dfrac{1 + tan^2}{1 + cot^2A}\right)=\left(\dfrac{(1 - tanA}{1 - cotA)^2}\right)^2 = tan^2A

Answered by Anonymous
13

SOLUTION:-

CASE 1:

Take L.H.S

 \frac{1 +  {tan}^{2}A }{1 + {cot}^{2} A}   \\  \\ = >   \frac{1 +  \frac{ {sin}^{2} A}{ {cos}^{2}A} }{1 +  \frac{ {cos}^{2} A}{ {sin}^{2} A} }  \\  \\  =  >  \frac{ \frac{ \frac{ {cos}^{2} A +  {sin}^{2} A}{ {cos}^{2} A} }{ {sin}^{2}A +  {cos}^{2}A  } }{ {sin}^{2}A }  \\  \\  =  >   \frac{ \frac{ \frac{1}{ {cos}^{2} A} }{1} }{ {sin}^{2} A}  \\  \\  =  >  \frac{1}{ {cos}^{2} A}  \times  \frac{ {sin}^{2} A}{1}   =  \frac{ {sin}^{2} A}{ {cos}^{2}A }  \\  \\  =  >  {tan}^{2} A \:  \:  \:  \: [R.H.S]

CASE 2:

Take L.H.S

( \frac{1 + tan \: A}{1 - cot \: A} ) {}^{2}  \\  \\  =  > (  \frac{1 +  \frac{sin \: A}{cos \: A} }{1 -  \frac{cos \: A}{sin \: A} } ) {}^{2}  \\  \\  =  >  (\frac{ \frac{ \frac{cos \: A +sin \: A}{cos \: A} }{sin \: A - cos \: A} }{sin \: A} ) {}^{2}  \\  \\  =  > ( \frac{ \frac{ \frac{  (sin \: A +cos \: A)}{cos \: A} }{-sin \: A - cos \: A} }{sin \: A} ) {}^{2}  \\  \\  =  > ( \frac{ (sin \: a + cos \: A)}{-sin \: A - cos \: A}  \times  \frac{sin \: A}{cos \: A} ) {}^{2}  \\  \\  =  > (-  \frac{sin \: A}{cos \: A} ) {}^{2}  \\  \\  =  >  \frac{ {sin}^{2} A}{ { cos}^{2} A}  =  {tan}^{2} A \:  \:  \:  \:  \: [R.H.S]

Hence proved.

Hope it helps ☺️

Similar questions