Math, asked by mansi5092, 10 months ago

answer the question ​

Attachments:

Answers

Answered by anu24239
2

HIII.. .. .. .. ..

THERE IS YOUR ANSWER.... .

since \:  \sin( a )  \: and \:  \cos( a )  \: is \: the \:  \\ rootsof \: the \: equation \: \\  4 {x}^{2}  - 3x +  \alpha  = 0 \\  \\ than \:  \sin(a)  +  \cos(a)  =  \frac{ - ( - 3)}{4}  \\  \\ divide \: the \: equation \: by \: cos(a)  \\ than \: the \: equation \: become \\  \\  \tan(a)   + 1 =   \frac{3}{4} ...........eq(2) \\  \\  \tan(a)  =  \frac{ - 1}{4}  \\  \\ from \: first \: equation \\  \\  \sin(a)  +  \cos(a)  =  \frac{3}{4}  \\     \\  \\ now \: we \: can \: use \: the \: question..... \\  \\  \sin(a )  +  \cos(a)  +  \tan(a)  +  \cot(a)  +  \sec(a)  +  \csc(a)  = 7 \\  \\ after \: using \: all \: the \: above \: eq. \\  \\  \frac{3}{4}  +  \frac{ - 1}{4}  +  ( - 4) +  \frac{ \sin(a) + cos(a)  }{ \sin(a)  \cos(a)  }  = 7 \\  \\  \sin(a)  \cos(a)  =  \frac{ \alpha }{4}  \\  \frac{3}{4}  +  \frac{ - 1}{4}   - 4 +  \frac{ \frac{3}{4} }{ \frac{ \alpha }{4} }  = 7 \\  \\  \frac{2}{4}  - 4 +  \frac{3}{ \alpha }  = 7 \\  \\ multiply \: the \: whole \: by  \: 4 \alpha  \\  \\ than \: we \: get \\ 2 \alpha  - 16 \alpha  + 12 = 28 \alpha  \\  \\  - 14 \alpha  + 12 = 28 \alpha  \\  \\ 12 = 42 \alpha  \\  \alpha  =  \frac{2}{7}  \\  \\ now \: the \: value \: of \:  | \frac{25 \alpha }{4} |    \\  \frac{50}{28}

HOPE IT'S HELP YOU.. .

Similar questions