Math, asked by mansi509290, 1 year ago

answer the question​

Attachments:

Answers

Answered by Salomirani
1

Answer:

7

Step-by-step explanation:

Given that 4x^{2} -3x+\alpha =0 has two roots as sinA and cosA

so sinA+cosA= 3/4  and  sinAcosA=\frac{\alpha}{4}

Given sinA+cosA+tanA+cotA+secA+cosecA=7

\frac{3}{4} +\frac{sinA}{cosA} +\frac{cosA}{sinA} +\frac{1}{cosA} +\frac{1}{sinA} =7

\frac{3}{4} + \frac{sinA^{2} +cosA^{2} }{sinAcosA} +\frac{sinA+cosA}{sinAcosA} =7

\frac{1}{\frac{\alpha }{4}  } + \frac{3/4}{\alpha/4 } =7

3/alpha+4/alpha=25/4

7/alpha=25/4

alpha=28/25

hence value of \frac{25\alpha }{4}= 25*28/25*1/4=7

Similar questions