Math, asked by NandiniChauhan, 10 months ago

answer the question​

Attachments:

Answers

Answered by αmαn4чσu
36

\bold{Solution:}

\implies \sf \angle\;XYZ\;+\angle\;ZYP= 180^{\circ}\quad [L.P]

\sf \implies 64^{\circ}+\;\angle\;ZYP=180^{\circ}

\sf \implies \angle\;ZYP=180^{\circ}-64^{\circ}

\sf \implies \angle\;ZYP=116^{\circ}

\sf \therefore \angle\;XYQ=\angle\;XYZ+\angle\;ZYQ

\sf \implies 64+58\\ \\ \implies 122.\quad{Ans.}

\sf \therefore\;Reflex\;of\;\angle\;QYP = 360-58\\ \\ \implies Ans. = 302^{\circ}

If,

AB || CD and transversal T intersect then out at P and Q respect.

\bold{Therefore\;1\;pair\;of\;corresponding\;angles\;are\;equal.}

\sf \implies \angle\;1=\;\angle\;5\\ \implies \angle\;2=\angle\;6.\\ \\ \implies \angle\;3=\angle\;7\\ \\ \implies \angle\;4=\angle\;8.

\bold{Therefore\;2\;pair\;of\;alternate\;interior\;angles\;are\;equal.}

\sf \implies \angle\;3=\angle\;5\\ \\ \implies \angle\;4=\angle\;6.

\bold{Therefore\;3\; pair\; of\;consecutive\;interior\;angles\;are\;supplementary.}

\sf \implies \angle\;4+\angle\;5=180^{\circ}\\ \\ \implies \angle\;3+\angle\;6=180^{\circ}

Similar questions