Math, asked by scs830307, 3 months ago

answer the question ​

Attachments:

Answers

Answered by iamsachiikim
0

Answer:

w4dyfu-te4e5fugihit6e4e5fihojigufys

Step-by-step explanation:

ars5d6f8houe5e5dygiy8ufhftsearcugudtwrs


scs830307: waste answer
scs830307: sorry mistake I don't want to send you
Answered by vipashyana1
1

Answer:

 \sqrt{ \frac{1 - sinθ}{1 + sinθ} }  = secθ - tanθ \\  \sqrt{ \frac{1 - sinθ}{1 + sinθ} }  \times  \sqrt{ \frac{1 -sinθ }{1 - sinθ} }  =secθ  - tanθ \\  \sqrt{ \frac{(1 - sinθ)(1 -sin θ)}{(1 + sinθ)(1 - sinθ)} }   = secθ- tanθ \\   \sqrt{ \frac{ {(1 - sinθ)}^{2} }{ {(1)}^{2} -  {(sinθ)}^{2}  } }  =sec  - tan \\  \sqrt{ \frac{ {(1 - sinθ)}^{2} }{1 -  {sin}^{2} θ} }  = secθ - tanθ \\  \sqrt{ \frac{ {(1 - sinθ)}^{2} }{ {cos}^{2} θ} }  =  secθ- tanθ  \\   \frac{1 - sinθ}{cosθ}  =secθ  - tanθ \\  \frac{1}{cosθ}  -  \frac{sinθ}{cosθ}  =  secθ- tanθ \\ sec θ- tanθ = secθ - tanθ \\ LHS=RHS \\ Hence \: proved

Similar questions