Math, asked by chinniakshaya05, 5 months ago

answer the question ​

Attachments:

Answers

Answered by Flaunt
142

Question

Show that the points A(5,4,2) ,B(6,2,-1) and C(8,-2,-7) are collinear.

Solution

To show that all three points are collinear we have prove the distance sum of any sides is equal to the third one.

E.g,=>AB+BC=CA

x_{1}=5,x_{2}=6 \&\: x_{3}=8

y_{1}=4,y_{2}=2\&\: y_{3}=-2

z_{1}=2,z_{2}=-1 \&\: z_{3}=-7

\sf AB=  \sqrt{ {(x_{2} - x_{1})}^{2}  +  {(y_{2 }- y_{1})}^{2}  +  {(z_{2} - z_{1})}^{2} }

 \longmapsto \sqrt{ {(6 - 5)}^{2}  +  {(2 - 4)}^{2} +   {( - 1 - 2)}^{2}  }

 \longmapsto \sqrt{ {(1)}^{2} +  {( - 2)}^{2} +  {( - 3)}^{2}   }

\longmapsto \sqrt{1 + 4 + 9}  =  \sqrt{14}

\sf \bold{AB=  \sqrt{14}}

\sf BC=  \sqrt{ {(x_{3} - x_{2})}^{2}  +  {(y_{3 }- y_{2})}^{2}  +  {(z_{3} - z_{2})}^{2} }

\longmapsto  \sqrt{ {(8 - 6)}^{2}  +  {( - 2 - 2)}^{2} +  {( - 7 + 1)}^{2}  }

\longmapsto \sqrt{ {(2)}^{2} +  {( - 4)}^{2}  +  {( - 6)}^{2}  }

\longmapsto \sqrt{4 + 16 + 36}  =  \sqrt{56}  = 2 \sqrt{14}

\sf \bold{BC = 2 \sqrt{14}}

\sf CA=  \sqrt{ {(x_{3} - x_{1})}^{2}  +  {(y_{3 }- y_{1})}^{2}  +  {(z_{3} - z_{1})}^{2} }

\longmapsto \sqrt{ {(8 - 5)}^{2}  + {( - 2 - 4)}^{2} +  {( - 7 - 2)}^{2}   }

\longmapsto \sqrt{ {(3)}^{2}  +  {( - 6)}^{2}  +  {( - 9)}^{2} }

\longmapsto \sqrt{9 + 36 + 81}  =  \sqrt{126}  = 3 \sqrt{14}

\sf \bold{CA = 3 \sqrt{14}}

\sf\bold{AB + BC = CA}

Hence ,the sum of two sides is equal to the third side.

\thereforeThe above points are collinear.

Similar questions