Math, asked by haricharanreddy98, 2 months ago

answer the question ​

Attachments:

Answers

Answered by itzPapaKaHelicopter
2

Answer:

 \textbf{Given:–}  \:  \frac{ \sqrt{7}  - 2}{ \sqrt{7} + 2 }  = a \sqrt{7}  + b

 \textbf{Find:–  } \text{the value of a and b }

Solution:

\text{On Solving L.H.S}

 =  \frac{ \sqrt{7}  - 2}{ \sqrt{7}  + 2}

\text{on Rationalisation}

 =  \frac{ \sqrt{7}  - 2}{ \sqrt{7}  + 2}  \times  \frac{ \sqrt{7} - 2 }{ \sqrt{7}  - 2}

 =  \frac{( \sqrt{7} - 2 {)}^{2}  }{( \sqrt{7}  {)}^{2}  - (2 {)}^{2} }

 =  \frac{( \sqrt{7}  {)}^{2} + (2 {)}^{2}   - 2(2) \sqrt{7} }{7 - 4}

 =  \frac{7 + 4 - 4 \sqrt{7} }{3}

 =  \frac{4 \sqrt{7}  + 11}{3}

 =  \frac{ - 4 \sqrt{7} }{3}  +  \frac{11}{3}

 \textbf{On Comparing L.H.S and R.H.S}

 \textbf{Hence,}   \frac{ - 4 \sqrt{7} }{3}  +  \frac{11}{3}  = a \sqrt{7}  + b

 \textbf{Here}  \: a =  \frac{ - 4}{3}  \: \text{and}  \: b =  \frac{11}{3}

 \\  \\  \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Similar questions