Math, asked by rafisharu163, 1 month ago

answer the question ​

Attachments:

Answers

Answered by kunaljoon10
1

Answer:

on solving √8+√2√15 answere will come 8.3

on solving d 5+√3 we get answere releated to it

so d is option

Answered by mathdude500
6

Given Question :-

\rm :\longmapsto\: \sqrt{8 + 2 \sqrt{15} }  =  -  -  -  -  -

 \:  \:  \:  \:  \: (a) \:  \:  \sqrt{5} +  \sqrt{3}

 \:  \:  \:  \:  \: (b) \:  \:  \sqrt{5}  -  \sqrt{3}

 \:  \:  \:  \:  \: (c) \:  \:  \sqrt{5}   + 3

 \:  \:  \:  \:  \: (d) \:  \:  \sqrt{3}   + 5

 \red{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\: \sqrt{8 + 2 \sqrt{15} }

can be rewritten as

\rm \:  =  \: \sqrt{5 + 3 + 2 \sqrt{5 \times 3} }

can further rewritten as

\rm \:  =  \: \sqrt{ {( \sqrt{5})}^{2}  +  {( \sqrt{3} )}^{2}  + 2 \times  \sqrt{5} \times  \sqrt{3}  }

We know,

\rm :\longmapsto\:\boxed{ \tt{ \:  {x}^{2} +  {y}^{2}  + 2xy =  {(x + y)}^{2} \: }}

So, using this identity, we get

\rm \:  =  \: \sqrt{ {( \sqrt{5}  +  \sqrt{3} )}^{2} }

\rm \:  =  \: \sqrt{5} +  \sqrt{3}

Hence,

\rm \implies\:\boxed{ \tt{ \:  \sqrt{8 + 2 \sqrt{15}} =  \sqrt{5} +  \sqrt{3} \: }}

  • So, option (a) is correct.

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions