Math, asked by YagneshTejavanth, 17 days ago

Answer the question ​

Attachments:

Answers

Answered by amansharma264
6

EXPLANATION.

α, β, γ are the roots of the cubic equations.

⇒ x³ - px² + qx - r = 0.

As we know that,

Sum of the zeroes of the cubic polynomial.

⇒ α + β + γ = - b/a.

⇒ α + β + γ = p.

Products of the zeroes of the cubic polynomial two at a time.

⇒ αβ + βγ + γα = c/a.

⇒ αβ + βγ + γα = q.

Product of the zeroes of the cubic polynomial.

⇒ αβγ = - d/a.

⇒ αβγ = r.

(a) If roots are : (βγ + 1/α), (γα + 1/β), (αβ + 1/γ).

As we know that,

Sum of the zeroes of the cubic polynomial.

⇒ βγ + 1/α + γα + 1/β + αβ + 1/γ.

⇒ 1/α + 1/β + 1/γ + αβ + βγ + γα.

⇒ [(αβ + βγ + γα)/αβγ] + αβ + βγ + γα.

Put the values in the equation, we get.

⇒ q/r + q = (q + qr)/r.

Products of the zeroes of the cubic polynomial two at a time.

⇒ (βγ + 1/α)(γα + 1/β) + (γα + 1/β)(αβ + 1/γ) + (αβ + 1/γ)(βγ + 1/α).

⇒ [αβγ² + γ + γ + 1/αβ] + [α²βγ + α + α + 1/βγ] + [αβ²γ + β + β + 1/γα].

⇒ α²βγ + αβ²γ + αβγ² + 2α + 2β + 2γ + 1/αβ + 1/βγ + 1/γα.

⇒ αβγ(α + β + γ) + 2(α + β + γ) + [(α + β + γ)/αβγ].

Put the values in the equation, we get.

⇒ r(p) + 2(p) + (p/r).

⇒ [(r²p + 2pr + p)/r].

Products of the zeroes of the cubic polynomial.

⇒ (βγ + 1/α) x (γα + 1/β) x (αβ + 1/γ).

⇒ [αβγ² + γ + γ + 1/αβ] x (αβ + 1/γ).

⇒ [αβγ² + 2γ + 1/αβ] x (αβ + 1/γ).

⇒ α²β²γ² + αβγ + 2αβγ + 2 + 1 + 1/αβγ.

Put the values in the equation, we get.

⇒ (αβγ)² + αβγ + 2(αβγ) + 3 + 1/αβγ.

⇒ (αβγ)² + 3(αβγ) + 1/αβγ + 3.

⇒ (r)² + 3(r) + 1/r + 3.

⇒ (r³ + 3r² + 3r + 1)/r = (r + 1)³/r.

As we know that,

Formula of cubic polynomial.

⇒ x³ - (α + β + γ)x² + (αβ + βγ + γα)x - αβγ.

Put the values in the equation, we get.

⇒ x³ - [(q + qr)/r]x² + [(r²p + 2pr + p)/r]x - [(r + 1)³/r] = 0.

rx³ - q(r + 1)x² + p(r + 1)² - (r + 1)³ = 0.

Answered by shashanknani6885
1

Theory of Equations

Answer:

a) rx³ - q( r + 1 )x² + p( r + 1 )²x - ( r + 1 )³

b) x³ - px² + ( 4q - p² )x + ( 8r - 4pq + p³ ) = 0

Step-by-step explanation:

Refer to attachment

Attachments:
Similar questions