Math, asked by rebellof06, 3 months ago


answer the question above

Attachments:

Answers

Answered by TheBrainlistUser
4

\large\underline\mathfrak\red{Solution \:  :- }

\sf{ \frac{ \sqrt{5}  - 2}{ \sqrt{5} + 2 }  -  \frac{ \sqrt{5}  + 2}{ \sqrt{5}  - 2} } \\

\sf{ \frac{( \sqrt{5} - 2) \times  (\sqrt{5} - 2) - ( \sqrt{5}  +  2) \times  (\sqrt{5}  +  2)}{( \sqrt{5 } + 2)( \sqrt{5}  - 2) } }

\sf\underline\green{Using  \: 3  \: Formula's  \: :- }

1) (a+b)² = a²+2ab+b²

2) (a-b)² = a²-2ab+b²

3) (a+b) (a-b) = a²-b²

\sf{ \frac{( \sqrt{5}  - 2) {}^{2} - ( \sqrt{5} + 2) {}^{2}}{( \sqrt{5}) {}^{2}  - (2) {}^{2}  }    } \\

\sf{ \frac{( \sqrt{5}) {}^{2}  - ( 2) \sqrt{5}  (2) + (2) {}^{2}  - ( \sqrt{5} + 2) {}^{2}  }{( \sqrt{5} ) {}^{2} - (2) {}^{2}  } }

\sf{ \frac{5  - 4 \sqrt{5}  + 4 - (( \sqrt{5  } ) {}^{2}  + (2) \sqrt{5} (2) + (2) {}^{2} }{( \sqrt{5} ) {}^{2} - (2) {}^{2}  } }

\sf{ \frac{9 - 4 \sqrt{5} -  (5 + 4 \sqrt{5}  + 4)}{( \sqrt{5}) {}^{2}  - (2) {}^{2}  }  }

\sf{ \frac{9  - 4 \sqrt{5} + 9 + 4 \sqrt{5}  }{5 - 4} } \\

\sf{ \frac{9 + 9}{1} } \\

\sf{\frac{18}{1}  = 18} \\

Answer = 18

Sorry friend correct answer -85

Sorry I given by mistake some correction in answer

How i tell

In numerator

5-4√5+4-(5+4√5+4)

Because of sign - in bracket sign change

5-4√5+4-5-4√5-4

-4√5-4√5

Answer :- -8√5

Answered by suraj5070
68

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt Simplify\:\:\dfrac{\sqrt{5}-2}{\sqrt{5}+2} - \dfrac{\sqrt{5}+2}{\sqrt{5}-2}

 \sf \bf \huge {\boxed {\mathbb {SOLUTION}}}

\bf \dfrac{\sqrt{5}-2}{\sqrt{5}+2} - \dfrac{\sqrt{5}+2}{\sqrt{5}-2}

 {\underbrace {\overbrace {\orange {\pmb {By\:taking\: LCM}}}}}

\bf \implies \dfrac{\big(\sqrt{5}-2\big)\big(\sqrt{5}-2\big)-\big(\sqrt{5}+2\big)\big(\sqrt{5}+2\big)}{\big(\sqrt{5}-2\big)\big(\sqrt{5}+2\big)}

 \bf \implies \dfrac{{\big(\sqrt{5}-2\big)}^{2}-{\big(\sqrt{5}+2\big)}^{2}}{{\big(\sqrt{5}\big)}^{2}-{\big(2\big)}^{2}}\longrightarrow \bigg[\because (a+b) (a-b) ={a}^{2}-{b}^{2} \bigg]

 \bf \implies \dfrac{\Big\{{\big(\sqrt{5}\big)}^{2}-2\big(\sqrt{5}\big)\big(2\big)+{\big(2\big)}^{2}\Big\}-\Big\{{\big(\sqrt{5}\big)}^{2}+2\big(\sqrt{5}\big)\big(2\big)+{\big(2\big)}^{2}\Big\}}{5-4}\longrightarrow \bigg[\because {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}\:and\:{(a+b)}^{2}={a}^{2}+2ab+{b}^{2} \bigg]

 \bf \implies \dfrac{\Big\{5-4\sqrt{5}+4\Big\}-\Big\{5+4\sqrt{5}+4\Big\}}{1}

 \bf \implies \Big\{9-4\sqrt{5}\Big\}-\Big\{9+4\sqrt{5}\Big\}

 \bf \implies 9-4\sqrt{5}-9-4\sqrt{5}

 \bf \implies \cancel{9}-4\sqrt{5}\cancel{-9}-4\sqrt{5}

 \bf \implies -4\sqrt{5}-4\sqrt{5}

 \bf \implies 2\Big(-4\sqrt{5}\Big)

 {\implies {\blue {\boxed {\boxed {\purple {\mathfrak {-8\sqrt{5}}}}}}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\pink {\sf {Identities}}}

 \sf {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 \sf {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}

 \sf (a+b) (a-b) ={a}^{2}-{b}^{2}

Similar questions