Math, asked by shree9963, 1 day ago

Answer the question ASAP​

Attachments:

Answers

Answered by XxitzZBrainlyStarxX
8

Question:-

 \sf \large Prove  \: that:(1 + tanA \: tanB) {}^{2}  + (tanA - tanB) {}^{2}  = sec {}^{2} A \: sec {}^{2} B.

Given:-

 \sf \large(1 + tanA \: tanB) {}^{2}  + (tanA - tanB) {}^{2}.

To Prove:-

 \sf \large(1 + tanA \: tanB) {}^{2}  + (tanA - tanB) {}^{2}  = sec {}^{2} A \: sec {}^{2} B.

Solution:-

 \sf \large L.H.S. = (1 + tanA \: tanB) {}^{2}  + (tanA - tanB) {}^{2}.

 \sf \large \Rightarrow1 + tan {}^{2}A \: tan {}^{2}  B + 2 \: tanA \: tanB + tan {}^{2} A + tan {}^{2} B - 2 \: tanA \: tanB.

 \sf \large \Rightarrow = (1 + tan {}^{2} A) + tan {}^{2} A \: tan {}^{2} B + tan {}^{2} B.

 \sf \large \Rightarrow sec {}^{2} A + tan{}^{2} B(tan {}^{2} A + 1) .\:  \:  \:  \: \:  \:  ( \because sec {}^{2} A - tan {}^{2} A = 1).

 \sf \large \Rightarrow sec {}^{2} A + sec {}^{2} A \:  \: tan {}^{2} B.

 \sf \large \Rightarrow sec {}^{2} A(1 + tan {}^{2} B). \:  \:  \:  \:  \: \:  \:  \:  ( \because sec {}^{2} B - tan {}^{2}B = 1).

 \sf \large \Rightarrow \:  \: R.H.S. = sec {}^{2} A \: sec {}^{2} B.

Answer:-

{ \boxed{ \sf \large \red{Hence \:  Proved, L.H.S. = R.H.S.}}} \\  { \boxed{ \sf \large \blue{(1 + tanA \: tanB) {}^{2}  + (tanA - tanB) {}^{2}  = sec {}^{2} A \: sec {}^{2} B.}}}

Hope you have satisfied.

Similar questions