Math, asked by ItzRiya07, 3 months ago

Answer the question attached.

━━━━━━━━━━━━━━━━━━

✿ No spam ❌
✿ Answer honestly ✅
✿ ThankYou for your help ❤️
✿ Please help me ☹️​

Attachments:

Answers

Answered by UtsavPlayz
1

 \frac{1}{ \sqrt{9} +  \sqrt{7}  }  +  \frac{ 1 }{ \sqrt{7}  +  \sqrt{5} }  +  \frac{1}{ \sqrt{5} +  \sqrt{3}  }  +  \frac{1}{ \sqrt{3}  +  \sqrt{1} }

By rationalising each term, we get:

 \frac{1}{ \sqrt{9}  +  \sqrt{7} }  \times  \frac{ \sqrt{9}  -  \sqrt{7} }{ \sqrt{9} -  \sqrt{7}  }  = \frac{ \sqrt{9}  -  \sqrt{7} }{2}

 \frac{1}{ \sqrt{7}  +  \sqrt{5} }  \times  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  -  \sqrt{5} }  =  \frac{ \sqrt{7}  -  \sqrt{5} }{2}

 \frac{1}{ \sqrt{5}  +  \sqrt{3}  }  \times  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  =  \frac{ \sqrt{5}  -  \sqrt{3} }{2}

 \frac{1}{ \sqrt{3}  +  \sqrt{1}  }  \times  \frac{ \sqrt{3}  -  \sqrt{1} }{ \sqrt{3}  -  \sqrt{1} }  =  \frac{ \sqrt{3}  -  \sqrt{1} }{2}

By adding the terms, we get:

 \frac{ \sqrt{9} -  \sqrt{7}  }{2}  +  \frac{ \sqrt{7}  -  \sqrt{5} }{2}  +  \frac{ \sqrt{5}  -  \sqrt{3} }{2}  +  \frac{ \sqrt{3}  -  \sqrt{1} }{2}

 =  \frac{ \sqrt{9} -  \sqrt{7}   +  \sqrt{7}   -  \sqrt{5}  +  \sqrt{5}  -  \sqrt{3}  +  \sqrt{3}  -  \sqrt{1} }{2}

  = \frac{ \sqrt{9}  -  \sqrt{1} }{2}  \\   = \frac{3 - 1}{2}  \\  =  \frac{2}{2}  = 1

Hence, Proved

Answered by mksinghudl78
2

hope \: it \: helps \: you

❃.✮:▹ ◃:✮.❃❃.✮:▹ ◃:✮.❃

Attachments:
Similar questions