Math, asked by kanavbj3, 3 months ago

Answer the question below​

Attachments:

Answers

Answered by Anonymous
2

Answer:

Refer the attachement for better understanding

⬆️⬆️⬆️⬆️⬆️⬆️

Be Brainly!

Attachments:
Answered by amansharma264
6

EXPLANATION.

Area bounded by x² + y² = 4.

x = √3y and x-axis.

The area should be in the first quadrant.

As we know that,

Equation : x² + y² = 4.

This is the equation of circle.

⇒ x² + y² = (2)².

Radius of circle = 2.

Put the value of x = √3y in equation, we get.

⇒ (√3y)² + y² = 4.

⇒ 3y² + y² = 4.

⇒ 4y² = 4.

⇒ y² = 1.

⇒ y = ± 1.

Put the value of y = 1 in equation, we get.

⇒ x = √3y.

⇒ x = √3(1).

⇒ x = √3.

Put the value of y = -1 in equation, we get.

⇒ x = √3y.

⇒ x = √3(-1).

⇒ x = -√3.

⇒ x = √3y.

⇒ y = x/√3.

⇒ x² + y² = 4.

⇒ y² = 4 - x².

⇒ y = ±√4 - x².

For equation considered as 1st quadrant then y = √4 - x².

⇒ A = A₁ + A₂.

Area of OXY = Area of OXZ - Area of ZXY.

\sf \implies \displaystyle \int_{0}^{\sqrt{3} } y dx = Area \ OXZ.

\sf \implies \displaystyle \int_{0}^{\sqrt{3} }  \dfrac{x}{\sqrt{3} } dx.

\sf \implies \dfrac{1}{\sqrt{3} } \displaystyle \int_{0}^{\sqrt{3} }  x dx

\sf \implies \dfrac{1}{\sqrt{3} } \bigg[\dfrac{x^{2} }{2} \bigg]_{0}^{\sqrt{3}}

\sf \implies \displaystyle \dfrac{1}{2\sqrt{3} }   \bigg[ x^{2} \bigg]_{0}^{\sqrt{3} }

\sf \implies \displaystyle \dfrac{1}{2\sqrt{3} }  \bigg[(\sqrt{3} )^{2} - (0)^{2} \bigg]

\sf \implies \displaystyle \dfrac{1}{2\sqrt{3} }  \times 3 = \dfrac{\sqrt{3}}{2}

\sf \implies \displaystyle \int_{\sqrt{3} }^{2} ydx. \ = Area \ of \ ZXY.

\sf \implies \displaystyle \int_{\sqrt{3} }^{2} \sqrt{4 - x^{2} } dx

As we know that,

Formula of :

\sf \implies \displaystyle \int \sqrt{a^{2}  - x^{2} } dx = \dfrac{1}{2}x\sqrt{a^{2}  - x^{2} }   +\dfrac{a^{2} }{2} sin^{-1} \bigg(\dfrac{x}{a} \bigg) + C.

Using this formula in equation, we get.

\sf \implies \displaystyle \int_{\sqrt{3} }^{2} \sqrt{(2)^{2}  - x^{2} } dx

\sf \implies \displaystyle \bigg[ \dfrac{1}{2} x \sqrt{4 - x^{2} } + 2 sin^{-1} \bigg(\frac{x}{2}  \bigg) \bigg]_{\sqrt{3} }^{2}

\sf \implies \displaystyle  \bigg[\dfrac{1}{2} (2 ) \sqrt{4 - (2)^{2} } + 2 sin^{-1} \bigg(\dfrac{2}{2}  \bigg) \bigg] \ - \bigg[ \dfrac{1}{2} (\sqrt{3} ) \sqrt{4 - (\sqrt{3})^{2}  } + 2sin^{-1}  \bigg(\dfrac{\sqrt{3} }{2} \bigg) \bigg]

\sf \implies \displaystyle  \bigg[ 0 + 2sin^{-1} (1) \bigg] \ - \bigg[ \dfrac{\sqrt{3} }{2} + 2sin^{-1}\bigg(\dfrac{\sqrt{3} }{2}  \bigg) \bigg]

\sf \implies \displaystyle  \bigg[ 2 sin^{-1} (1) - \dfrac{\sqrt{3} }{2}  - 2sin^{-1} \bigg(\dfrac{\sqrt{3} }{2} \bigg) \bigg].

\sf \implies \displaystyle  - \dfrac{\sqrt{3} }{2}  + 2 \bigg[ sin^{-1} (1) - sin^{-1} \bigg( \dfrac{\sqrt{3} }{2} \bigg) \bigg]

\sf \implies \displaystyle  \dfrac{-\sqrt{3} }{2} + 2 \bigg[ \dfrac{\pi}{2} - \dfrac{\pi}{3} \bigg]

\sf \implies \displaystyle  \dfrac{-\sqrt{3} }{2} + 2 \bigg[ \dfrac{\pi}{6} \bigg] \ = \dfrac{-\sqrt{3} }{2}  + \dfrac{\pi}{3}

Area of OYX = Area of OXZ - Area of ZXY.

\sf \implies \displaystyle  \dfrac{\sqrt{3} }{2}  - \frac{\sqrt{3} }{2}  + \dfrac{\pi}{3}  = \dfrac{\pi}{3}  \ sq. units.

Similar questions