Math, asked by venkatalakshmi0501, 6 months ago

answer the question fast......​

Attachments:

Answers

Answered by Anonymous
12

 \large \underline \bold{Solution :-}

\sf{\displaystyle \lim_{x \to \infty} \bigg(\dfrac{3x - 4}{3x + 2}\bigg)^{\dfrac{x+1}{3}}}

\sf{\displaystyle \lim_{x \to \infty}\bigg(\dfrac{(3x + 2) - 6}{(3x + 2)}\bigg)^{\dfrac{x + 1}{3}}}

\sf{\displaystyle \lim_{x \to \infty}\bigg(1 - \dfrac{6}{(3x + 2)}\bigg)^{\dfrac{x + 1}{3}}}

\sf{\displaystyle \lim_{x \to \infty}\bigg[\bigg(1 - \dfrac{6}{3x + 2}\bigg)^{\dfrac{3x+2}{-6}}\bigg]^{\dfrac{-6}{3x+2}\times \dfrac{x+1}{3}}}

 \large \underline \bold{We \: know \: that -}

\sf{(1 - x)^{n} = 1 - nx + \dfrac{n(n-1)}{2!} x^{2} -....}

\sf{\displaystyle \lim_{x \to \infty}e^{\bigg(\dfrac{-6}{3x + 2}\times \dfrac{x+1}{3}\bigg)}}

\sf{\displaystyle \lim_{x \to \infty}e^{\bigg(\dfrac{-2(x + 1)}{(3x + 2)}\bigg)}}

\sf{\displaystyle \lim_{x \to \infty}e^{\bigg(\dfrac{-2x(1 + \dfrac{1}{x})}{x(3 + \dfrac{2}{x})}\bigg)}}

\sf{\displaystyle \lim_{x \to \infty}e^{\bigg(\dfrac{-2(1 + \dfrac{1}{x})}{(3 + \dfrac{2}{x})}\bigg)}}

On putting the limit -

\sf{e^{\bigg(\dfrac{-2(1 + 0)}{3 + 0}\bigg)}}

\sf{e^{(\dfrac{-2}{3})}}

Similar questions