Math, asked by archanarajawat1970, 1 year ago

Answer the question fast ppl
sss

Attachments:

Answers

Answered by Anonymous
5

Answer \:  \\  \\ Given \:  \: Question \:  \: Is \:  \\  \\  \frac{ \sqrt{1 +  \cos(x) } }{ \sqrt{1 -  \cos(x) } }  = ( \csc(x)  +  \cot(x) ) \\  \\ lhs \:  \\  \\  \frac{ \sqrt{1 +  \cos(x) } }{ \sqrt{1 -  \cos(x) } }  \\  \\ Multiply \: Numerator \:  \: and \: Denominator \:  \: by \:  \:  \:  \\ 1 +  \cos(x)  \:  \: we \: have \\  \\  \frac{ \sqrt{1 +  \cos(x)  \times (1 +  \cos(x)) } }{ \sqrt{1  -   \cos(x) \times (1 +  \cos(x) ) }   }  \\  \\  \frac{ \sqrt{(1 +  \cos(x)) {}^{2}  } }{ \sqrt{1 -  \cos {}^{2} (x) } }  \\  \\  \frac{1 +  \cos(x) }{ \sqrt{ \sin {}^{2} (x) } }  \\  \\  \frac{1 +  \cos(x) }{ \sin(x) }  \\  \\  \frac{1}{ \sin(x) }  +  \frac{ \cos(x) }{ \sin(x) }  \\  \\  \csc(x)  +  \cot(x)  \:  \:  \: hence \: proved \\  \\ therefore \:  \:  \\  \\  \frac{ \sqrt{1 +  \cos(x) } }{ \sqrt{1 -  \cos(x) } }  =  \csc(x)  +  \cot(x)  \\  \\ Note \:  \\  \\  1 - \cos {}^{2} (x)  =  \sin {}^{2} (x)  \\  \\  \cot(x)  =  \frac{ \cos(x) }{ \sin(x) }  \\  \\  \csc(x)  =  \frac{1}{ \sin(x) }

Similar questions