Answer the question given in attachment
Answers
EXPLANATION.
A committee of 7 is to be formed from 9 bòys and 4 gìrls.
In how many ways this is be done when the committee consists of.
(1) = Exactly 3 gìrls.
(2) = At least 3 gìrls.
As we know that,
(1) = Exactly 3 gìrls.
Total number = 7.
Number of gìrls = 4.
Number of choose = 3.
Total number of ways = ⁴C₃ x ⁹C₄.
⇒ ⁴C₃ x ⁹C₄.
⇒ 4!/(3!)(4 - 3)! x 9!/(4)!(9 - 4)!.
⇒ 4!/3! x 9!/(4!)(5!).
⇒ 4 x 3!/3! x (9 x 8 x 7 x 6 x 5!)/(4 x 3 x 2 x 1)(5!).
⇒ 4 x (9 x 8 x 7 x 6)/(4 x 3 x 2).
⇒ 4 x (9 x 8 x 7 x 6)/24.
⇒ 9 x 8 x 7 = 504.
(2) = At least 3 gìrls.
First possibility is,
Total number = 7.
Number of gìrls = 4.
Number of choose = 3.
Total number of ways = ⁴C₃ x ⁹C₄.
⇒ ⁴C₃ x ⁹C₄.
⇒ 4!/(3!)(4 - 3)! x 9!/(4)!(9 - 4)!.
⇒ 4!/3! x 9!/(4!)(5!).
⇒ 4 x 3!/3! x (9 x 8 x 7 x 6 x 5!)/(4 x 3 x 2 x 1)(5!).
⇒ 4 x (9 x 8 x 7 x 6)/(4 x 3 x 2).
⇒ 4 x (9 x 8 x 7 x 6)/24.
⇒ 9 x 8 x 7 = 504.
Second possibility is.
We can select 4 gìrls and 3 bòys.
⇒ ⁴C₄ x ⁹C₃.
⇒ 4!/(4!)(4 - 4)! x 9!/(3!)(9 - 3)!.
⇒ 4!/(4!)(0!) x 9!/3! x 6!.
⇒ 1 x (9 x 8 x 7 x 6!)?(3 x 2 x 1)(6!).
⇒ 1 x 9 x 8 x 7/6.
⇒ 84.
Total number of ways = 504 + 84 = 588 ways.
(i) when committee consists of exactly 3 girls. Then remaining will be 4 boys in the committee.
(ii) when committee consists of atleast 3 girls
i.e., it may be 3 girls or 4 girls. Then there are two cases. One when there are 3 girls in a committee, then the boys will be 4 & Second when there are 4 girls in a committee, then the boys will be 3.