Math, asked by rohithkrhoypuc1, 2 months ago

Answer the question given in attachment ​

Attachments:

Answers

Answered by amansharma264
10

EXPLANATION.

A committee of 7 is to be formed from 9 bòys and 4 gìrls.

In how many ways this is be done when the committee consists of.

(1) = Exactly 3 gìrls.

(2) = At least 3 gìrls.

As we know that,

(1) = Exactly 3 gìrls.

Total number = 7.

Number of gìrls = 4.

Number of choose = 3.

Total number of ways = ⁴C₃ x ⁹C₄.

⇒ ⁴C₃ x ⁹C₄.

⇒ 4!/(3!)(4 - 3)! x 9!/(4)!(9 - 4)!.

⇒ 4!/3! x 9!/(4!)(5!).

⇒ 4 x 3!/3! x (9 x 8 x 7 x 6 x 5!)/(4 x 3 x 2 x 1)(5!).

⇒ 4 x (9 x 8 x 7 x 6)/(4 x 3 x 2).

⇒ 4 x (9 x 8 x 7 x 6)/24.

⇒ 9 x 8 x 7 = 504.

(2) = At least 3 gìrls.

First possibility is,

Total number = 7.

Number of gìrls = 4.

Number of choose = 3.

Total number of ways = ⁴C₃ x ⁹C₄.

⇒ ⁴C₃ x ⁹C₄.

⇒ 4!/(3!)(4 - 3)! x 9!/(4)!(9 - 4)!.

⇒ 4!/3! x 9!/(4!)(5!).

⇒ 4 x 3!/3! x (9 x 8 x 7 x 6 x 5!)/(4 x 3 x 2 x 1)(5!).

⇒ 4 x (9 x 8 x 7 x 6)/(4 x 3 x 2).

⇒ 4 x (9 x 8 x 7 x 6)/24.

⇒ 9 x 8 x 7 = 504.

Second possibility is.

We can select 4 gìrls and 3 bòys.

⇒ ⁴C₄ x ⁹C₃.

⇒ 4!/(4!)(4 - 4)! x 9!/(3!)(9 - 3)!.

⇒ 4!/(4!)(0!) x 9!/3! x 6!.

⇒ 1 x (9 x 8 x 7 x 6!)?(3 x 2 x 1)(6!).

⇒ 1 x 9 x 8 x 7/6.

⇒ 84.

Total number of ways = 504 + 84 = 588 ways.

Answered by BrainlyProgrammer007
97

\mathbb{\colorbox{red}{\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox{pink}{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox{peach}{Answer:-}}}}}}}}}}}}}}}

(i) when committee consists of exactly 3 girls. Then remaining will be 4 boys in the committee.

So, the \: required \: no.of \: ways  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  {}^{9} C4 \times  {}^{4} C3

=  \frac{9 }{4! \:5! }  \times  \frac{4!}{3! \: 1!}  =  \frac{9 \times 8 \times 7 \times 6}{6}  = 504

(ii) when committee consists of atleast 3 girls

i.e., it may be 3 girls or 4 girls. Then there are two cases. One when there are 3 girls in a committee, then the boys will be 4 & Second when there are 4 girls in a committee, then the boys will be 3.

So, No. of \: ways \: in \: first \: case \\  \:  \:  =  {}^{4} C3 \times  {}^{9} C4,

No. of \: ways \: in \: second \: case  \\ \:  \:  \:  \:  \:  \:  \:  \:  =  {}^{4} C4 \times  {}^{9} C3</p><p>

∴ Required \:  no. of  \: ways  \\ \:  \:  \:  \:  \:  =  {}^{4}  C3 \times  {}^{9} C4  \: +  {}^{4}  C4 \times  {}^{9}  C3

 =  \frac{4!}{3! \: 1!}   \times  \frac{9!}{4! \: 5!}  +  \frac{4!}{4! \: 0!}  \times  \frac{9!}{6! \: 3!}

 =  \frac{9 \times 8 \times 7  \times 6}{6}  +  \frac{9 \times 8 \times 7}{6}

\huge\red{A}\pink{N}\orange{S}\green{W}\blue{E}\gray{R:-}

\huge\boxed{\fcolorbox{blue}{blue}{504+84=588}}

Similar questions