Math, asked by 143hithen, 1 year ago

answer the question I will mark u as brain list​

Attachments:

Answers

Answered by VemugantiRahul
4
Hi there!
Here's the answer:

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•

¶¶¶ POINTS TO REMBER:

\dfrac{d}{dx}\, x^{n}=nx^{n-1}

\dfrac{a^{m}}{a^{n}}= a^{m-n}

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•

¶¶¶ SOLUTION:

Given,
\left(\dfrac{x}{a}\right)^n+\left(\dfrac{y}{b}\right)^n = 2

\left(\dfrac{1}{a^n}\right)x^n+\left(\dfrac{y}{b^n}\right)y^n= 2

Differentiate w.r.t x on both sides

\left(\dfrac{1}{a^n}\right)n \cdot x^{n-1}+\left(\dfrac{y}{b^n}\right)n \cdot y^{n-1}\cdot \dfrac{dy}{dx}= 0

Substitute x = a and y = b to find Derivative at (a,b)

\implies \dfrac{na^{n-1}}{a^{n}}+\dfrac{nb^{n-1}}{b^{n}}\cdot\dfrac{dy}{dx}

\implies na^{n-1-n}+nb^{n-1-n}\cdot\dfrac{dy}{dx}

\implies na+nb\cdot\dfrac{dy}{dx}=0

\implies nb\cdot\dfrac{dy}{dx} = -na

\implies \dfrac{dy}{dx}_{(a,b)}=\dfrac{-a}{b}

This answer is in option -2

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•
Answered by bivee
0

¶¶¶ POINTS TO REMBER:

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•

¶¶¶ SOLUTION:

Given,

Differentiate w.r.t x on both sides

Substitute x = a and y = b to find Derivative at (a,b)

This answer is in option -2

Similar questions