Math, asked by Anonymous, 4 months ago

Answer the question in the attached

No spam answer​

Attachments:

Answers

Answered by BrainlyKingdom
11

Answer

\sf{\sqrt{2}\:units}

Step-by-step explanation

\sf{\mathsf{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}}

\bf{\mathbf{The\:distance\:between\:}\left(\cos \left(\theta\right),\:\sin \left(\theta\right)\right)\mathbf{\:and\:}\left(\sin \left(\theta\right),\:-\cos \left(\theta\right)\right)\mathbf{\:is\:}}\sf{=\sqrt{\left(\sin \left(\theta\right)-\cos \left(\theta\right)\right)^2+\left(-\cos \left(\theta\right)-\sin \left(\theta\right)\right)^2}}

\sf{=\sqrt{\sin ^2\left(\theta\right)-2\sin \left(\theta\right)\cos \left(\theta\right)+\cos ^2\left(\theta\right)+\left(-\cos \left(\theta\right)-\sin \left(\theta\right)\right)^2}}

\sf{=\sqrt{\sin ^2\left(\theta\right)-2\sin \left(\theta\right)\cos \left(\theta\right)+\cos ^2\left(\theta\right)+\cos ^2\left(\theta\right)+2\cos \left(\theta\right)\sin \left(\theta\right)+\sin ^2\left(\theta\right)}}

\sf{=\sqrt{2\sin ^2\left(\theta\right)+2\cos ^2\left(\theta\right)}}

\sf{=\sqrt{2(\sin ^2\left(\theta\right)+\cos ^2\left(\theta\right))}\:\:\:....\bf{sin^2\theta+cos^2\theta=1}}

\sf{=\sqrt{2(1)}}

\sf{=\sqrt{2}\:units}


BrainlyKingdom: Thanks :P
Anonymous: Osmmm
anindyaadhikari13: Edit the first line too, write √2 units there.
BrainlyKingdom: Thanks @ItzBeautyQueen23
BrainlyKingdom: I can't edit it now since I can't find the option
anindyaadhikari13: Don't worry, contact any mod to get an edit.
BrainlyKingdom: Edited :)
Anonymous: great !
BrainlyKingdom: Thank You !
Answered by BrainlyPopularman
21

GIVEN :

• Two points are (cosθ , - sinθ) and (sinθ , - cosθ).

TO FIND :

• Distance between given points = ?

SOLUTION :

• We know that distance between points (x₁ , y₁) and (x₂ , y₂) is –

 \\ \large\implies{ \boxed{\bf Distance =  \sqrt{{( x_2-x_1)}^{2} +  {(y_2-y_1)}^{2}}}} \\

• Here –

 \\  \:  \:  \: \bf{\huge{.}} \:  \:  \:  x_1 =  \cos( \theta) \\

 \\  \:  \:  \: \bf{\huge{.}} \:  \:  \:  x_2 =  \sin( \theta) \\

 \\  \:  \:  \: \bf{\huge{.}} \:  \:  \:  y_1 =  \sin( \theta) \\

 \\  \:  \:  \: \bf{\huge{.}} \:  \:  \: y_2 = -\cos( \theta) \\

• Now put the values –

 \\\implies\bf Distance =  \sqrt{{( \sin \theta - \cos \theta)}^{2} +  {( - \cos\theta- \sin \theta)}^{2}} \\

 \\\implies\bf Distance =  \sqrt{{( \sin \theta - \cos \theta)}^{2} +  {( \cos\theta +  \sin \theta)}^{2}} \\

 \\\implies\bf Distance =  \sqrt{{( \sin^{2} \theta  + \cos^{2} \theta - 2\sin \theta\cos\theta)}+  ( \sin^{2} \theta  + \cos^{2} \theta +  2\sin \theta\cos\theta)} \\

 \\\implies\bf Distance =  \sqrt{{\sin^{2} \theta  + \cos^{2} \theta - 2\sin \theta\cos\theta}+\sin^{2} \theta  + \cos^{2} \theta +2\sin \theta\cos\theta} \\

 \\\implies\bf Distance =  \sqrt{\sin^{2} \theta  + \cos^{2} \theta +\sin^{2} \theta  + \cos^{2} \theta} \\

 \\\implies\bf Distance =  \sqrt{2\sin^{2} \theta  + 2\cos^{2} \theta} \\

 \\\implies\bf Distance =  \sqrt{2(\sin^{2} \theta + \cos^{2} \theta)} \\

 \\\implies\bf Distance =  \sqrt{2(1)} \\

 \\\implies\large{\boxed{\bf Distance =  \sqrt{2}}} \\

Hence , The distance is √2.


INSIDI0US: Perfect answer sir
Anonymous: Nice
BrainlyKingdom: Hi @BrainlyPopularMan, Kindly Mention sec²θ + cos²θ = 1, so that users don't get confused with the answer
BrainlyKingdom: *sin²θ + cos²θ = 1
Anonymous: Nice
BrainlyHero420: Perfect ❤️
Anonymous: Thank you :) So much .
fgfh7494: hi
Anonymous: Nyc
Similar questions