Physics, asked by Anonymous, 5 months ago

Answer the question in the attachment

Give relevant answer only

Do full solution ​

Attachments:

Answers

Answered by ktripathy08
47

Answer:

Option C is the correct answer

Solution :

F =G m1m2

-----------

d^2

So , if we look at option C

F =G (m1/2)(m2/2)

--------------------------

(d/2)^2

= G ( m1m2/4)

-------------------

(d^2/4)

= G m1m2

----------------

d^2

= Gmm

---------------

d^2

And on comparing we see its still the same!

Regards

Answered by Anonymous
52

Solution:-

Formula

 \rm \implies \: F = G \dfrac{m _{1}m_{2} }{ {r}^{2} }

Now we have to find the gravitational force

Given:-

 \rm \implies \: m_{1} = m

 \rm \implies m_{2} = m

 \rm \implies \: r = d

Now put the value on formula

\rm \implies \: F = G \dfrac{m \times  m }{ {d}^{2} }

\rm \implies \: F = \dfrac{m {}^{2} G }{ {d}^{2} }

Now we have find the same value of F in given below

Now Take one by one

Option:- 1

Given:-

\rm \implies \: m_{1} = m

\rm \implies m_{2} = m

 \rm \implies \: r =  \dfrac{d}{2}

Now put the value on formula

\rm \implies \: F = G \dfrac{m \times  m }{ \bigg( { \dfrac{d}{2}  \bigg)}^{2} }

\rm \implies \: F = G \dfrac{m {}^{2}  }{ { \dfrac{d}{4} }^{2} }

\rm \implies \: F = \dfrac{4m {}^{2} G }{ {d}^{2} }

Option:-2

Given

\rm \implies \: m_{1} =  \dfrac{m}{2}

\rm \implies m_{2} =  \dfrac{m}{2}

\rm \implies \: r =  2d

Put the value on formula

\rm \implies \: F = G \dfrac{ \dfrac{m}{2}  \times   \dfrac{m}{2}  }{(2 {d})^{2} }

\rm \implies \: F = G \dfrac{m^{2}   }{ 4 \times 4{d}^{2} }  =\dfrac{ {m}^{2}  G }{16 {d}^{2} }

Option:- 3

Given

\rm \implies \: m_{1} =  \dfrac{m}{2}

\rm \implies m_{2} =  \dfrac{m}{2}

\rm \implies \: r =   \dfrac{d}{2}

Put the value on formula

\rm \implies \: F = G \dfrac{ \dfrac{m}{2}  \times   \dfrac{m}{2}  }{ \bigg( { \dfrac{d}{2} } \bigg) ^{2} }

\rm \implies \: F = G \dfrac{ {m} {}^{2}  }{  { 4 \times \dfrac{d}{4} }  ^{2} }  =  \dfrac{ {m}^{2}G }{ {d}^{2} }

Option:- 4

Given

\rm \implies \: m_{1} =  2{m}{}

\rm \implies \: m_{2} =  2{m}

 \rm \implies \: r =  \dfrac{d}{4}

Put the value on formula

\rm \implies \: F = G \dfrac{2m \times  2m }{ {  \bigg(\dfrac{d}{4} \bigg) }^{2} }

\rm \implies \: F = G \dfrac{4m {}^{2}   }{ { \dfrac{d}{16} }^{2} }  =  \dfrac{64 {m}^{2} }{ {d}^{2} }

We can clearly see option 3 is same

Answer

 \rm \to \: correct \: option \: is \: c

Similar questions