answer the question in the given picture
Attachments:
Answers
Answered by
1
Correct option is
B
0
(ax+b)(3x+2)=0
⇒ 3ax
2
+2ax+3bx+2b
⇒ 3ax
2
+(2a+3b)x+2b=0
It is given that
3
−2
and
2
1
are zeros of the equation 3ax
2
+(2a+3b)x+2b=0
Here, A=3a,B=2a+3b,C=2b
Let α=
3
−2
and β=
2
1
We know,
⇒ α+β=
A
−B
⇒
3
−2
+
2
1
=
3a
−(2a+3b)
⇒
6
−4+3
×3a=−2a−3b
⇒
2
−a
=−2a−3b
⇒ −a=−4a−6b
⇒ 3a+6b=0 ----- ( 1 )
Now,
⇒ α.β=
A
CA
⇒
3
−2
×
2
1
=
3a
2b
⇒
3
−1
×3a=2b
⇒ −a+2b=0 ----- ( 2 )
Adding equation ( 1 ) and ( 2 ) we get,
b=0
Put b=0 in ( 2 ) we get,
a=0
∴ a+b=0+0=0
Similar questions