Math, asked by manoj203756, 10 months ago

Answer the question in the photo​

Attachments:

Answers

Answered by kaushik05
103

 \huge \mathfrak{solution}

Given:

 \star \:  log( \frac{x + y}{3} )  =  \frac{1}{2} ( log(x)  +  log(y) ) \\

To show :

 \star \:  {x}^{2}  +  {y}^{2}  = 7xy \\

Answer:

 \leadsto \:  log( \frac{x + y}{3} )  =  \frac{1}{2} ( log(x)  +  log(y) ) \\  \\  \leadsto \: 2 log(  \frac{x + y}{3}  )  =  log(x)  +  log(y)  \\  \\  \leadsto log(( { \frac{x + y}{3} )}^{2} )  =  log(xy)  \\  \\  \leadsto \: ( { \frac{x + y}{3} })^{2}  = xy \\  \\  \leadsto \:  \frac{ {(x + y)}^{2} }{ {3}^{2} }  = xy \\  \\  \leadsto \:  {x}^{2}  +  {y}^{2}  + 2xy = 9xy \\  \\  \leadsto \:  {x}^{2}  +  {y}^{2}  = 9xy - 2xy \\  \\  \leadsto \:  {x}^{2}  +  {y}^{2}  = 7xy

Formula used:

  \star \bold{ log(m)  +  log(n )  =  log(mn) } \\  \\  \star \bold{n log(m)  =  log(m) ^{n} }

Answered by Anonymous
12

given. \:

 log( \frac{(x + y)}{3} )  =  \frac{1}{2}( log(x)   +  log(y) )

to \: prove \:  =

 \frac{x}{y}  +  \frac{y}{x}  = 7

proof \:  =

 log( \frac{(x  + y)}{3} )  =  \frac{1}{2}( log(x)  +  log(y) )

2 log( \frac{(x + y)}{3} )  =  log(x) +  log(y)

 log( { \frac{(x + y)}{ {3}^{2} } }^{2} )  =  \:  log(xy)

property :

 log( {x}^{a} )  = a log(x)

 log(ab)  =  log(a)  +  log(b)

next step :

 { \frac{(x + y)}{ {3}^{2} } }^{2}  = xy

 log(x)  =  log(y)

 =  >  \:  \: x = y

 =  =  >  >  \:  \:  \frac{ {x}^{2} +  {y}^{2} + 2xy  }{9}  = xy

 {x}^{2}  +  {y}^{2}  + 2xy = 9xy

 {x}^{2}  +  {y}^{2}  = 9xy - 2xy

 {x}^{2}  +  {y}^{2}  = 7xy

 =  =  >  >  \:  \:  \:  \frac{ {x}^{2} }{xy}  +  { \frac{y}{xy} }^{2}  = 7

 =  =  >  >  \:  \:  \:  \:  \frac{x}{y}  +  \frac{y}{x}  = 7

Hence , proved that :

 \frac{x}{y}  +  \frac{y}{x}  = 7

Similar questions