Answer The Question
No copied -,-
No spam
No Kuch vi
Answers
Now, Multiplying and Divide by
So,
We know that
So,
As
,
and
So, Substituting the values
Answer:
\int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{dx}{1 + \cos x} ∫
4
π
4
3π
1+cosx
dx
Now, Multiplying and Divide by
1 - \cos x1−cosx
So,
\int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{dx}{1 + \cos x} \times \frac{1 - \cos x}{1 - \cos x} ∫
4
π
4
3π
1+cosx
dx
×
1−cosx
1−cosx
= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{ (1 - \cos x) dx}{(1 + \cos x)( 1 - \cos x) } =>∫
4
π
4
3π
(1+cosx)(1−cosx)
(1−cosx)dx
= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{ (1 - \cos x) dx}{{(1 )}^{2} - {( \cos x)}^{2} } =>∫
4
π
4
3π
(1)
2
−(cosx)
2
(1−cosx)dx
We know that {1 - {( \cos x)}^{2} } = { \sin }^{2} x1−(cosx)
2
=sin
2
x
So,
= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{ (1 - \cos x) dx}{ { \sin }^{2} x} =>∫
4
π
4
3π
sin
2
x
(1−cosx)dx
= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} }( \frac{ (1 ) }{ { \sin }^{2} x} - \frac{ \cos x}{ { \sin}^{2} x} )dx=>∫
4
π
4
3π
(
sin
2
x
(1)
−
sin
2
x
cosx
)dx
= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} }( \frac{ (1 ) }{ { \sin }^{2} x} - \frac{ \cos x}{ \sin x} \times \frac{1}{ \cos x } )dx=>∫
4
π
4
3π
(
sin
2
x
(1)
−
sinx
cosx
×
cosx
1
)dx
As
\underline{\overline{\mid{\bold{\blue{\mathcal{\frac{ (1 ) }{ { \sin }^{2} x} = { \cosec }^{2} x}}\mid}}}}
∣
sin
2
x
(1)
=cosec
2
x∣
,
\underline{\overline{\mid{\bold{\blue{\mathcal{\frac{ \cos x}{ \sin x} = \cot x}}\mid}}}}
∣
sinx
cosx
=cotx∣
and
\underline{\overline{\mid{\bold{\blue{\mathcal{\frac{1}{ \cos x } = \cosec x}}\mid}}}}
∣
cosx
1
=cosecx∣
So, Substituting the values
= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} }({ \cosec }^{2} x - \cot x \cosec x )dx=>∫
4
π
4
3π
(cosec
2
x−cotxcosecx)dx
= > [ - \cot x + \cosec x ]^ \frac{3\pi}{4} _ \frac{\pi}{4} =>[−cotx+cosecx]
4
π
4
3π
= > ( 1 - \sqrt{2} ) - ( - 1 + \sqrt{2} )=>(1−
2
)−(−1+
2
)
= > 2=>2
Explanation:
#KeepLearning...
.
.
.
Warm regards:Miss Chikchiki
.
.
.