Physics, asked by King412, 2 months ago

Answer The Question
No copied -,-
No spam
No Kuch vi ​

Attachments:

Answers

Answered by Anonymous
22

\int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{dx}{1 +  \cos x}

Now, Multiplying and Divide by

1 -  \cos x

So,

\int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{dx}{1 +  \cos x}  \times  \frac{1 -  \cos x}{1 -  \cos x}

 =  > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{ (1 -  \cos x) dx}{(1 +  \cos x)( 1 -  \cos x) }

 =  > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{ (1 -  \cos x) dx}{{(1 )}^{2}   -  {( \cos x)}^{2} }

We know that {1    -  {( \cos x)}^{2} }    =  { \sin }^{2} x

So,

 =  > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{ (1 -  \cos x) dx}{ { \sin }^{2}  x}

 =  > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} }( \frac{ (1 ) }{ { \sin }^{2}  x}    -   \frac{ \cos x}{ { \sin}^{2} x}  )dx

=  > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} }( \frac{ (1 ) }{ { \sin }^{2}  x}    -   \frac{ \cos x}{ \sin x}   \times  \frac{1}{ \cos x } )dx

As

\underline{\overline{\mid{\bold{\blue{\mathcal{\frac{ (1 ) }{ { \sin }^{2}  x}  =  { \cosec }^{2} x}}\mid}}}}

,

\underline{\overline{\mid{\bold{\blue{\mathcal{\frac{ \cos x}{ \sin x} =  \cot x}}\mid}}}}

and

\underline{\overline{\mid{\bold{\blue{\mathcal{\frac{1}{ \cos x } =  \cosec x}}\mid}}}}

So, Substituting the values

=  > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} }({ \cosec }^{2} x -  \cot x  \cosec x )dx

  =  >[  -  \cot x +  \cosec x ]^ \frac{3\pi}{4} _ \frac{\pi}{4}

 =  >  ( 1 -  \sqrt{2} ) - ( - 1 +  \sqrt{2} )

 =  > 2

Answered by itzkanika85
2

Answer:

\int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{dx}{1 + \cos x} ∫

4

π

4

1+cosx

dx

Now, Multiplying and Divide by

1 - \cos x1−cosx

So,

\int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{dx}{1 + \cos x} \times \frac{1 - \cos x}{1 - \cos x} ∫

4

π

4

1+cosx

dx

×

1−cosx

1−cosx

= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{ (1 - \cos x) dx}{(1 + \cos x)( 1 - \cos x) } =>∫

4

π

4

(1+cosx)(1−cosx)

(1−cosx)dx

= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{ (1 - \cos x) dx}{{(1 )}^{2} - {( \cos x)}^{2} } =>∫

4

π

4

(1)

2

−(cosx)

2

(1−cosx)dx

We know that {1 - {( \cos x)}^{2} } = { \sin }^{2} x1−(cosx)

2

=sin

2

x

So,

= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} } \frac{ (1 - \cos x) dx}{ { \sin }^{2} x} =>∫

4

π

4

sin

2

x

(1−cosx)dx

= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} }( \frac{ (1 ) }{ { \sin }^{2} x} - \frac{ \cos x}{ { \sin}^{2} x} )dx=>∫

4

π

4

(

sin

2

x

(1)

sin

2

x

cosx

)dx

= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} }( \frac{ (1 ) }{ { \sin }^{2} x} - \frac{ \cos x}{ \sin x} \times \frac{1}{ \cos x } )dx=>∫

4

π

4

(

sin

2

x

(1)

sinx

cosx

×

cosx

1

)dx

As

\underline{\overline{\mid{\bold{\blue{\mathcal{\frac{ (1 ) }{ { \sin }^{2} x} = { \cosec }^{2} x}}\mid}}}}

sin

2

x

(1)

=cosec

2

x∣

,

\underline{\overline{\mid{\bold{\blue{\mathcal{\frac{ \cos x}{ \sin x} = \cot x}}\mid}}}}

sinx

cosx

=cotx∣

and

\underline{\overline{\mid{\bold{\blue{\mathcal{\frac{1}{ \cos x } = \cosec x}}\mid}}}}

cosx

1

=cosecx∣

So, Substituting the values

= > \int_{ \frac{\pi}{4} }^{ \frac{3\pi}{4} }({ \cosec }^{2} x - \cot x \cosec x )dx=>∫

4

π

4

(cosec

2

x−cotxcosecx)dx

= > [ - \cot x + \cosec x ]^ \frac{3\pi}{4} _ \frac{\pi}{4} =>[−cotx+cosecx]

4

π

4

= > ( 1 - \sqrt{2} ) - ( - 1 + \sqrt{2} )=>(1−

2

)−(−1+

2

)

= > 2=>2

Explanation:

#KeepLearning...

.

.

.

Warm regards:Miss Chikchiki

.

.

.

sry ans copied h-,-

Similar questions