Math, asked by s1082kruthi2438, 1 month ago

answer the question ple​

Attachments:

Answers

Answered by BrainlySparrow
50

  \pink{\pmb{ \sf{ \odot \:Question : }}}

Find the value of x.

  \pink{\pmb{ \sf{ \odot \:Solution : }}}

We can solve the following question with 2 methods :

  • By first finding the adjacent angle to 110° and using angle sum property.
  • Second method by using exterior angle property.

First Method :

Let the angle be y.

 \displaystyle{  \sf{\leadsto \:  {110}^{ \circ}  + y =  {180}^{ \circ} \quad \:  \quad(linear \: pair) }}

 \displaystyle{  \sf{\leadsto \: y = {180}^{ \circ}  -  {110}^{ \circ}  }}

 \displaystyle{  \sf{\leadsto \:   \pink{y=  \bf{ {70}^{ \circ} }}}}

Using angle sum property :

 \displaystyle{  \sf{\implies \: {50}^{ \circ} + y + x =  {180}^{ \circ}    }}

Putting the value of y :

 \displaystyle{  \sf{\implies \: {50}^{ \circ} +  {70}^{ \circ}  + x =  {180}^{ \circ}    }}

 \displaystyle{  \sf{\implies \: {120}^{ \circ} + x =  {180}^{ \circ}    }}

 \displaystyle{  \sf{\implies \:   x =  {180}^{ \circ}  -  {120}^{ \circ}  }}

 \displaystyle{  \sf{\implies \:   x =  {60}^{ \circ}  }}

 \therefore \bf{Value \: of \: x \: is \:  {60}^{ \circ}. }

Method 2 :

The exterior angle property of the ∆ says that :

An exterior angle of a triangle is equal to the sum of its two opposite non-adjacent interior angles.

Now by using this property,

 \displaystyle{  \sf{\leadsto \: {50}^{ \circ} + x  = {110}^{ \circ} }}

 \displaystyle{  \sf{\leadsto \:  x  = {110}^{ \circ}   - {50}^{ \circ}}}

 \displaystyle{  \sf{\leadsto \:   \red{x  =  \bf{{60}^{ \circ} }}}}

 \therefore \bf{Value \: of \: x \: is \:  {60}^{ \circ}. }

Conclusion :

 \pink{ \mathfrak{ \bigstar \: Value \: of \: x \: is \:  {60}^{ \circ}. }}

Similar questions