Math, asked by rishavsingh55123322, 3 months ago

answer the question please​

Attachments:

Answers

Answered by Flaunt
141

Question

 \sf\large \dfrac{ {x}^{ \frac{7}{2}  }  \times  \sqrt{y} }{ {x}^{ \frac{5}{2} }  \times  \sqrt{ {y}^{3} } }

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf\large \boxed{  \bold{\star\:\sqrt{a}  =  {a}^{ \frac{1}{2} }} \:\star}

\sf \longmapsto\large  \dfrac{ {x}^{ \frac{7}{2} }  \times   {y}^{ \frac{1}{2} }  }{ {x}^{ \frac{5}{2} }  \times  { {(y}^{3} )}^{ \frac{1}{2} } }

\sf \longmapsto\large \dfrac{ {x}^{ \frac{7}{2} }  \times  {y}^{ \frac{1}{2} } }{ {x}^{ \frac{5}{2} }  \times  {y}^{ \frac{3}{2} } }

Concepts

If bases are same with different powers then their powers gets added in multiplication and gets substracted while we divide.

\sf \large\boxed{ \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}}

\sf\large \boxed{ {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}}

\sf \longmapsto\large {x}^{ \frac{7}{2}  -  \frac{5}{2} }  \times  {y}^{ \frac{1}{2}  -  \frac{3}{2} }

\sf \longmapsto \large{x}^{ \frac{2}{2} }  \times  {y}^{ \frac{ - 2}{2} }

\sf \longmapsto \: x \times  {y}^{ - 1}

 \sf= \large \bold{  \dfrac{x}{y} }

Answered by vanajabaligodugula
0

Answer:

the picture shows the answer for your question

We can write

x {7 \div 2 = x5\div 2 \:  \times x}

as well as

 {y3  \div 2 =y1 \div 2 \times y {}^{}  }^{}

Attachments:
Similar questions