Math, asked by rohithkrhoypuc1, 2 months ago

Answer the question please i request ​

Attachments:

Answers

Answered by senboni123456
7

Step-by-step explanation:

We have,

 \sec ^{ - 1} \bigg(  \frac{5}{4} \bigg )  +  \tan^{ - 1}  \bigg(  \frac{5}{12} \bigg) \\

 =  \cos ^{ - 1} \bigg(  \frac{4}{5} \bigg )  +  \tan^{ - 1}  \bigg(  \frac{5}{12} \bigg) \\

 =  \tan ^{ - 1} \bigg \{   \frac{ \sqrt{1 -  (\frac{4}{5} )^{2} }}{ \frac{4}{5} } \bigg  \}  +  \tan^{ - 1}  \bigg(  \frac{5}{12} \bigg) \\

 =  \tan ^{ - 1} \bigg \{   \frac{ \frac{3}{5} }{ \frac{4}{5} } \bigg  \}  +  \tan^{ - 1}  \bigg(  \frac{5}{12} \bigg) \\

 =  \tan ^{ - 1}  \bigg(  \frac{ 3}{ 4 } \bigg ) +  \tan^{ - 1}  \bigg(  \frac{5}{12} \bigg) \\

 =  \tan ^{ - 1}  \bigg \{ \frac{ \frac{3}{4} +  \frac{5}{12}  }{1 -  \frac{3}{4}. \frac{5}{12}  }  \bigg \} \\

 =  \tan ^{ - 1}  \bigg \{ \frac{ \frac{3}{4} +  \frac{5}{12}  }{1 - \frac{15}{48}  }  \bigg \} \\

 =  \tan ^{ - 1}  \bigg \{ \frac{   \frac{36 + 20}{48}  }{1 - \frac{15}{48}  }  \bigg \} \\

 =  \tan ^{ - 1}  \bigg \{ \frac{   \frac{36 + 20}{48}  }{\frac{48 - 15}{48}  }  \bigg \} \\

 =  \tan ^{ - 1}  \bigg \{ \frac{   56  }{33 }  \bigg \} \\

 =  \cot ^{ - 1}  \bigg (\frac{   33  }{56 }  \bigg ) \\

Similar questions