Math, asked by santosh9449009630, 9 months ago

Answer the question pls quickly

Attachments:

Answers

Answered by 9RUTVIK9
0

Step-by-step explanation:

LHS:

= 1+tan²A / 1+cot²A

Using the trignometric identities we know that 1+tan²A= Sec²A and 1+cot²A= Cosec²A

= Sec²A/ Cosec²A

On taking the reciprocals we get

= Sin²A/Cos²A

= tan²A

RHS:

=(1-tanA)²/(1-cotA)²

Substituting the reciprocal value of tan A and cot A we get,

=(1-sinA/cosA)²/(1-cosA/sinA)²

=[(cosA-sinA)/cosA]²/ [(sinA-cos)/sinA)²

=(cosA-sinA)²×sin²A /Cos²A. /(sinA-cosA)²

=1×sin²A/Cos²A×1.

=tan

The values of LHS and RHS are same.

Hence proved

Answered by CharmingPrince
4

\huge\green {\underline  {\mathfrak {Answer}}}

\underline  {\bold{\pink {To \ prove :}}}

\dfrac{1+tan^2A}{1+cot^2A} = \dfrac{sin^2A}{cos^2A} = tan^2A

\underline  {\bold {\pink{Solution:}}}

Solving LHS :

\dfrac{1 + tan^2A}{1 + cot^2A}

\dfrac{sec^2A}{cosec^2A}(Identity \ 1, \ 2⬇️)

\dfrac{1}{cos^2A} \times \dfrac{sin^2A}{1}(Identity \ 3 ,\ 4⬇️)

\dfrac{sin^2A}{cos^2A}

\boxed{\implies{\boxed{tan^2A}}}

(Identity \ 5⬇️)

\red{\underline{Trigonometric \; Identities \; used}}

1️⃣ \boxed{1 + tan^2A = sec^2A}

2️⃣ \boxed{1 + cot^2A = cosec^2A}

3️⃣ \boxed{sec^2A = \dfrac{1}{cos^2A}}

4️⃣ \boxed{cosec^2A = \dfrac{1}{sin^2A}}

5️⃣ \boxed{\dfrac{sin^2A}{cos^2A} = {tan^2A}}

Similar questions