English, asked by rohithkrhoypuc1, 1 month ago

Answer the question which is in attachment​

Attachments:

Answers

Answered by anindyaadhikari13
9

\texttt{\textsf{\large{\underline{Solution}:}}}

Let:

 \tt \implies y = \dfrac{ {x}^{5}  -  cos(x) }{sin(x) }

 \tt \implies \dfrac{dy}{dx} = \dfrac{d}{dx} \bigg ( \dfrac{ {x}^{5}  -  cos(x) }{sin(x) }  \bigg)

Using differentiation rule:

 \tt \implies \dfrac{d}{dx} \bigg( \dfrac{f}{g} \bigg) =  \dfrac{g \cdot \dfrac{d}{dx}(f) - f \cdot \dfrac{d}{dx}(g) }{ {g}^{2} }

 \tt \implies \dfrac{dy}{dx} =  \dfrac{sin(x) \cdot \dfrac{d}{dx} \big( {x}^{5}  -  cos(x) \big)  - \big( {x}^{5} - cos(x) \big) \cdot \dfrac{d}{dx} \big(sin(x)  \big)   }{ {sin}^{2}(x)}

 \tt \implies \dfrac{dy}{dx} =  \dfrac{sin(x) \big(5 {x}^{4} - ( -  sin(x))   \big) - \big( {x}^{5} - cos(x) \big) \times cos(x) }{ {sin}^{2}(x)}

 \tt \implies \dfrac{dy}{dx} =  \dfrac{sin(x) \big(5 {x}^{4} +  sin(x) \big) - \big( {x}^{5} - cos(x) \big) \times cos(x) }{ {sin}^{2}(x)}

 \tt \implies \dfrac{dy}{dx} =  \dfrac{5 {x}^{4}  \: sin(x)  +  sin^{2} (x)  - {x}^{5} \: cos(x) +  cos^{2} (x) }{ {sin}^{2}(x)}

 \tt \implies \dfrac{dy}{dx} =  \dfrac{5 {x}^{4}  \: sin(x)   - {x}^{5} \: cos(x) +1}{ {sin}^{2}(x)}

Which is our required answer.

\texttt{\textsf{\large{\underline{Learn More}:}}}

 \tt 1. \:  \dfrac{d}{dx}sin(x) =  cos(x)

 \tt 2. \:  \dfrac{d}{dx}cos(x) =   - sin(x)

 \tt 3. \:  \dfrac{d}{dx}tan(x) = sec^{2} (x)

 \tt 4. \:  \dfrac{d}{dx}cot(x) =  - cosec^{2} (x)

 \tt 5. \:  \dfrac{d}{dx}sec(x) = sec(x)  \: tan(x)

 \tt 6. \:  \dfrac{d}{dx}cosec(x) =- cosec(x) \:  cot(x)


anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions