Math, asked by divyansh2612, 7 months ago

answer the question....will be marked brainiest if answered in 2 mins. have arrived till here... 96√7 = a - b√7​...wrong answer will get you reported

Attachments:

Answers

Answered by Anonymous
4

Solution:-

 \rm \:  \dfrac{8 + 3 \sqrt{7} }{8 - 3 \sqrt{7} }  -  \dfrac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} }  = a  - b \sqrt{7}

Now take lcm

 \dfrac{(8 + 3 \sqrt{7} )(8 + 3 \sqrt{7} ) - (8 - 3 \sqrt{7} )(8 - 3 \sqrt{7} )}{(8 - 3 \sqrt{7} )(8 + 3 \sqrt{7} )}

Using this identity

=> ( a + b )(a + b ) = ( a + b )² = a² + b² + 2ab

=>( a - b )² = a² + b² - 2ab

=> ( a + b ) ( a - b ) = ( a² - b² )

We get

 \dfrac{(8 + 3 \sqrt{7}) {}^{2}   - (8 -  3\sqrt{7}) {}^{2}  }{(8) {}^{2} - (3 \sqrt{7}  ) {}^{2} }

 \dfrac{ {8}^{2} +  (3 \sqrt{7} ) {}^{2}  + 2 \times 8 \times 3 \sqrt{7}  - ({8}^{2} +  (3 \sqrt{7} ) {}^{2}   -  2 \times 8 \times 3 \sqrt{7} )}{ {8}^{2} - (3 \sqrt{7} ) {}^{2}  }

 \dfrac{64 + 63 + 48 \sqrt{7}  - (64 + 63 - 48 \sqrt{7} )}{64 - 63}

127 + 48 \sqrt{7}  - (127 - 48 \sqrt{7} )

127 + 48 \sqrt{7}  - 127 + 48 \sqrt{7}

48 \sqrt{7}  + 48 \sqrt{7}

96 \sqrt{7}

Now

a = 0 and b = -96

Now we have to find

 \rm \sqrt{a - b}

 \sqrt{0 - ( - 96)}

 \rm \:  \implies \sqrt{96}

Similar questions