Answer the question with full calculations -
The sum of first 10 terms of an AP is (- 150) and the sum of it's next 10 terms is (- 550). Find the AP.
⭐ No stupidity or spamming ⭐
Answers
Answered by
15
Answer,
Let a be the first term and d the common difference.
Given: Sum of first 10 terms = S10 = (- 150)
Sum of next 10 terms = - 550
i.e. S20 - S10 = (-550)
Consider S10 = - 150
⇒ (10/2) [2a + (10 - 1)d] = - 150
⇒ 5 × [2a + 9d] = (-150)
⇒ [2a + 9d] = - 30 ………………….(1)
Now, consider S20 - S10 = - 550
⇒ (20/2) [2a + (20 - 1)d] - (10/2) [2a + (10 - 1)d] = - 550
⇒ 10 × [2a + 19d] - 5 [2a + 9d] = - 550
⇒ 10a + 145d = - 550 …………………..(2)
On subtracting equation (2) from 5 times of equation (2), we get,
- 100d = 400
⇒ d = - 4
∴ a = 1/2 (-30 - 9d)
⇒ a = 1/2 (-30 + 36)
⇒ a = 3
Therefore the AP is 3, - 1, - 5, - 9,….
Thanks!!
Let a be the first term and d the common difference.
Given: Sum of first 10 terms = S10 = (- 150)
Sum of next 10 terms = - 550
i.e. S20 - S10 = (-550)
Consider S10 = - 150
⇒ (10/2) [2a + (10 - 1)d] = - 150
⇒ 5 × [2a + 9d] = (-150)
⇒ [2a + 9d] = - 30 ………………….(1)
Now, consider S20 - S10 = - 550
⇒ (20/2) [2a + (20 - 1)d] - (10/2) [2a + (10 - 1)d] = - 550
⇒ 10 × [2a + 19d] - 5 [2a + 9d] = - 550
⇒ 10a + 145d = - 550 …………………..(2)
On subtracting equation (2) from 5 times of equation (2), we get,
- 100d = 400
⇒ d = - 4
∴ a = 1/2 (-30 - 9d)
⇒ a = 1/2 (-30 + 36)
⇒ a = 3
Therefore the AP is 3, - 1, - 5, - 9,….
Thanks!!
ArchitectSethRollins:
Thank you ankita di ^_^
Answered by
0
Hey there !!
Let a be the first term and d be the common difference of the given AP .
S₁₀ = -150.
⇒ Sn = n/2 [ 2a + (n-1)d]
⇒ S₁₀ = 10/2 [ 2a + ( 10 - 1 ) d ].
⇒ -150= 10/2 [ 2a + 9d ]
⇒ -150 = 5 [ 2a + 9d ]
⇒ -30 = 2a + 9d
⇒2a + 9d = -30...........(1)
Clearly, the sum 20 term = - 150 + (-550) .
⇒ S₂₀ = -700
⇒ Sn = n/2 [ 2a + (n-1)d]
⇒ S₂₀ = 20/2 [ 2a + ( 20 - 1 )d ] .
⇒ -700 = 20/2 [ 2a + 19d ]
⇒ -700 = 10 [ 2a + 19d ]
⇒ -70 = 2a + 19d .
⇒ 2a + 19d = -70........(2)
Substracting 1 and 2 , we get
2a + 19d = -70
2a + 9d = -30
- - +
____________
⇒ 10d = -40
⇒ d = -40/10 = -4
Put the value of d in equation 1.
2a + 9d = -30
⇒ 2a -36 = -30
⇒ 2a = -30+36
⇒ a = 6/2 = 3
a = 3
d = -4
Hence, AP is 3,-1,-5, - 9 ....
THANKS
#BeBrainly.
Let a be the first term and d be the common difference of the given AP .
S₁₀ = -150.
⇒ Sn = n/2 [ 2a + (n-1)d]
⇒ S₁₀ = 10/2 [ 2a + ( 10 - 1 ) d ].
⇒ -150= 10/2 [ 2a + 9d ]
⇒ -150 = 5 [ 2a + 9d ]
⇒ -30 = 2a + 9d
⇒2a + 9d = -30...........(1)
Clearly, the sum 20 term = - 150 + (-550) .
⇒ S₂₀ = -700
⇒ Sn = n/2 [ 2a + (n-1)d]
⇒ S₂₀ = 20/2 [ 2a + ( 20 - 1 )d ] .
⇒ -700 = 20/2 [ 2a + 19d ]
⇒ -700 = 10 [ 2a + 19d ]
⇒ -70 = 2a + 19d .
⇒ 2a + 19d = -70........(2)
Substracting 1 and 2 , we get
2a + 19d = -70
2a + 9d = -30
- - +
____________
⇒ 10d = -40
⇒ d = -40/10 = -4
Put the value of d in equation 1.
2a + 9d = -30
⇒ 2a -36 = -30
⇒ 2a = -30+36
⇒ a = 6/2 = 3
a = 3
d = -4
Hence, AP is 3,-1,-5, - 9 ....
THANKS
#BeBrainly.
Similar questions