Science, asked by Rahul9908, 4 months ago

Answer the question
with steps​

Attachments:

Answers

Answered by Seafairy
4

Given :

  • Focal length (f) = -20cm
  • Distance of the image (v) = -15cm
  • height of the object \sf (h_o) = 5cm

To Find :

  • Distance of the object (u)
  • height of the image \sf (h_i)

Formulas Applied :

Case 1 :-

\Rightarrow \sf \dfrac{1}{f}=\dfrac{1}{v}-\dfrac{1}{u}

\underline{\boxed{\sf \dfrac{1}{u}=\dfrac{1}{v}-\dfrac{1}{f}}}

Case 2 :-

\sf magnification =  \dfrac{height_{(image)}}{height_{(object)}} _____(1)

\sf magnification =  \dfrac{distance _{(image)}}{distance _{(object)}} _____(2)

On equating the equations (1) and (2)

\sf \dfrac{height_{(image)}}{height_{(object)}}=\dfrac{distance _{(image)}}{distance _{(object)}}

\underline{\boxed{\sf \dfrac{h_i}{h_o}=\dfrac{v}{u}}}

Solution :

1. Distance of the Object

\longrightarrow \sf \dfrac{1}{u}=\dfrac{1}{v}-\dfrac{1}{f}\\\\\longrightarrow \sf \dfrac{1}{u} = \Big(\dfrac{1}{-15}\Big)-\Big(\dfrac{1}{-20}\Big)\\\\\longrightarrow \sf \dfrac{1}{u}=\dfrac{-1}{15}+\dfrac{1}{20}\\\\\longrightarrow \sf \dfrac{1}{u}=\dfrac{-20+15}{300}\\\\\longrightarrow \sf \dfrac{1}{u}=\dfrac{-5}{300}\\\\\longrightarrow \sf \dfrac{1}{u}=\dfrac{-1}{60}\\\\\boxed{\sf u = -60\:cm}

2. height of the image

\longrightarrow \sf \dfrac{h_i}{h_o}=\dfrac{v}{u}\\\\\longrightarrow \sf \Big(\dfrac{h_i}{5} \Big)=\Big(\dfrac{-15}{-60}\Big)\\\\\longrightarrow \sf h_i = \dfrac{15 \times {\cancel{5}}^1}{{\cancel{60}}_{12}}\\\\\longrightarrow \sf h_i = \dfrac{15}{12} \Rightarrow \dfrac{5}{4}\\\\\boxed{\sf h_i = 1.25 \: cm}

Required Answer :

Distance of the object is \underline{\sf - 60\:cm}

Height of the image is \underline{\sf 1.25 \:cm}

Similar questions