Math, asked by grevathip, 1 month ago

answer the questions and I will mark it as brainlist answer​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\boxed{ \tt{ \: tan\theta =  \frac{1}{ \sqrt{7} } \: }}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\boxed{ \tt{ \:  \frac{ {cosec}^{2}\theta -  {sec}^{2}\theta}{ {cosec}^{2} \theta +  {sec}^{2} \theta} \: }}

 \green{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:tan\theta = \dfrac{1}{ \sqrt{7} }

Now, Consider

\rm :\longmapsto\:\dfrac{ {cosec}^{2}\theta -  {sec}^{2}\theta}{{cosec}^{2}\theta  + {sec}^{2}\theta}

We know,

\boxed{ \tt{ \:  {cosec}^{2}\theta -  {cot}^{2}\theta = 1}}

and

\boxed{ \tt{ \:  {sec}^{2}\theta -  {tan}^{2}\theta = 1}}

So, on using these Identities,

\rm \:  =  \:\dfrac{(1 +  {cot}^{2} \theta) - (1 +  {tan}^{2}\theta) }{(1 +  {cot}^{2} \theta)  +  (1 +  {tan}^{2}\theta) }

\rm \:  =  \:\dfrac{1 +  {cot}^{2} \theta- 1  - {tan}^{2}\theta }{1 +  {cot}^{2} \theta  +  1 +  {tan}^{2}\theta}

\rm \:  =  \:\dfrac{{cot}^{2} \theta  - {tan}^{2}\theta }{2 + {cot}^{2} \theta +  {tan}^{2}\theta}

As,

\rm :\longmapsto\:\boxed{ \tt{ \: tan\theta =  \frac{1}{ \sqrt{7} } \: }}

So,

\boxed{ \tt{ \: cot\theta =  \frac{1}{tan\theta}}} \:  \: \rm \implies\:\boxed{ \tt{ \: cot\theta =  \sqrt{7} \: }}

So, on substituting these values, we get

\rm \:  =  \:\dfrac{7 - \dfrac{1}{7} }{2 + \dfrac{1}{7}  + 7}

\rm \:  =  \:\dfrac{\dfrac{49 - 1}{7} }{ \dfrac{14 + 1 + 49}{7}}

\rm \:  =  \:\dfrac{\dfrac{48}{7} }{ \dfrac{64}{7}}

\rm \:  =  \:\dfrac{48}{7}  \times \dfrac{7}{64}

\rm \:  =  \:\dfrac{3}{4}

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \:  \:  \frac{ {cosec}^{2}\theta -  {sec}^{2}\theta}{ {cosec}^{2} \theta +  {sec}^{2} \theta} \:  =  \:  \frac{3}{4}  \:  \: }}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions