Math, asked by doremon5541, 9 months ago

answer the questions
need explanation​

Attachments:

Answers

Answered by ItzAditt007
6

AnswEr:-

1) 4.

2) 8.

ExplanaTion:-

Given:-

• A quadratic polynomial,

\tt\longrightarrow4 {x}^{2}  - 4x + 1

\tt\longrightarrow \alpha\:\:And\:\: \beta Are the zeroes of given polynomial.

To Find:-

1. The value of \tt\dfrac{1}{\alpha}+\dfrac{1}{\beta} .

2. The value of \tt\dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2}.

ID used:-

\tt\longrightarrow a^2+b^2 = (a+b)^2-2ab

Concepts Used:-

• In a quadratic polynomial:-

Sum of zeroes,

 \tt\longrightarrow \alpha+\beta = \dfrac{-b}{a} .

Product of zeroes,

\tt\longrightarrow\alpha\beta=\dfrac{c}{a}.

Where,

  • a = Coefficient of x².
  • b = Coefficient of x.
  • c = Constant Term.

So Here,

\tt\longrightarrow \alpha  +  \beta  =  \frac{ - ( - 4)}{4}  \\  \\ \tt\longrightarrow \alpha  +  \beta  =  \frac{4}{4}  \\  \\ \tt\longrightarrow \alpha  +  \beta  = 1...(1) \\  \\ \tt \: and \\  \\ \tt\longrightarrow \alpha  \beta  =  \frac{c}{a}  \\  \\ \tt\longrightarrow  \alpha  \beta  =  \frac{1}{4} ...(2)

1:-

Given that \tt\alpha \:\:And\:\: \beta are zeroes and we have to find the value of \tt\dfrac{1}{\alpha}+\dfrac{1}{\beta}.

So lets solve this:-

\tt\mapsto \frac{1}{ \alpha } +  \frac{1}{ \beta }   \\  \\ \\ \tt =  \dfrac{1(  \beta ) + 1( \alpha )}{ \alpha  \times  \beta }  \\  \\ \\ \tt[taking \: lcm] \\  \\ \\ \tt =   \frac{  \beta  +  \alpha }{ \alpha  \beta }  \\  \\ \\ \tt =  \dfrac{ \alpha  +  \beta }{ \alpha  \beta }  \\  \\ \\ \tt =  \dfrac{1}{ \frac{1}{4} } . \\  \\ \\ \tt[from \: (1) \: and \: (2)]\\  \\ \\ \tt =   \dfrac{4}{1}  \\  \\ \\ \tt = 4.

\therefore The required value of \dfrac{1}{\alpha}+\dfrac{1}{\beta} is 4.

2:-

Here we have to find out the value of \dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2} .

So lets solve this:-

\tt\longrightarrow \dfrac{1}{ \alpha  {}^{2} }  +  \dfrac{1}{ \beta  {}^{2} }  \\  \\ \\ \tt =  \dfrac{1( \alpha {}^{2})  + 1( \beta  {}^{2}) }{ \alpha  {}^{2} \beta  {}^{2}  }  \\  \\ \\ \tt[taking \: lcm] \\  \\ \tt =   \dfrac{ \alpha  {}^{2} +  \beta  {}^{2}  }{( \alpha  \beta )( \alpha  \beta )}  \\  \\ \\ \tt =  \dfrac{( \alpha  +  \beta ) {}^{2} - 2 \alpha  \beta  }{( \alpha  \beta )( \alpha  \beta )} \\ \\  \\ \tt(using \: id) \\ \\ \\ \tt =  \dfrac{(1) {}^{2 }  - \cancel{2}( \frac{1}{\cancel{4}}) }{( \frac{1}{4})( \frac{1}{4} ) }  \\  \\ \\ \tt[from \: (1) \: and(2)] \\ \\ \\ \tt =  \dfrac{1-  \frac{1}{2} }{ \frac{1}{16} }  \\ \\ \\ \tt =  \dfrac{ \frac{2 - 1}{2} }{ \frac{1}{16} }  \\ \\ \\ \tt =  \dfrac{ \frac{1}{2} }{ \frac{1}{16} }  \\ \\ \\ \tt =  \dfrac{1}{2}  \times  \frac{16}{1}  \\ \\ \\ \tt = \dfrac{16}{2}  \\ \\ \\ \tt = 8.

\therefore The required value of \dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2} is 8.

Answered by BrainlyPopularman
8

Question :

▪︎ If { \bold{ \:  \:  \alpha  \:  \: and \:  \:  \beta  \:  \: }} are Zero's of 4x² - 4x + 1 = 0 , then find –

 \\ { \bold{ (a)  \:  \: \dfrac{1}{ \alpha }  +   \dfrac{1}{ \beta }   \:  \:  \:  \:  \:  \: \:  \:  \: (b) \:  \:  \dfrac{1}{ { \alpha }^{2} } +  \dfrac{1}{ { \beta }^{2} }  }} \\

ANSWER :

 \\ { \bold{  \: (a) \:  \:  \dfrac{1}{ \alpha }  +   \dfrac{1}{ \beta }    = 4 }} \\

 \\ { \bold{  \: (b)  \:  \: \dfrac{1}{ \alpha {}^{2}  }  +   \dfrac{1}{ \beta  {}^{2} }    = 8 }} \\

EXPLANATION :

• If a quadratic equation ax² + bx + c = 0 which have two roots { \bold{ \:  \:  \alpha  \:  \: and \:  \:  \beta  \:  \: }} then –

  \\ \longrightarrow{ \bold{ sum \:  \: of \:  \: roots =  \alpha  +  \beta  =  -  \dfrac{b}{a} }} \\

  \\ \longrightarrow{ \bold{ product \:  \: of \:  \: roots =  \alpha   \beta  =  \dfrac{c}{a} }} \\

• In the given equation –

  \\  \:  \:  \:  \:  \:  \:  \: { \huge{.}} \:  \:  \: { \bold{ a = 4 }} \\

  \\  \:  \:  \:  \:  \:  \:  \: { \huge{.}} \:  \:  \: { \bold{ b = -4 }} \\

  \\  \:  \:  \:  \:  \:  \:  \: { \huge{.}} \:  \:  \: { \bold{ c = 1 }} \\

• So that –

  \\ \longrightarrow{ \bold{ sum \:  \: of \:  \: roots =  \alpha  +  \beta  =  -  \dfrac{( - 4)}{4} = 1 }} \\

  \\ \longrightarrow{ \bold{ product \:  \: of \:  \: roots =  \alpha   \beta  =  \dfrac{1}{4} }} \\

  \\ \rule{220}{2} \\

 \\ { \bold{ (a) \:  \:   \:  \: =  \dfrac{1}{ \alpha }  +   \dfrac{1}{ \beta }    }} \\

 \\ { \bold{  \:  \:  \: \:  \:   \:  \: =  \dfrac{ \alpha  +  \beta }{ \alpha  \beta }     }} \\

• Now put the values –

 \\ { \bold{  \:  \:  \: \:  \:   \:  \: =  \dfrac{ 1 }{  \frac{1}{4} } }} \\

 \\ { \bold{  \:  \:  \: \:  \:   \:  \: =  4}} \\

• So that –

 \\ { \bold{ \implies \dfrac{1}{ \alpha }  +   \dfrac{1}{ \beta }    = 4 }} \\

  \\ \rule{220}{2} \\

 \\ { \bold{ (b) \:  \:   \:  \: =  \dfrac{1}{  { \alpha }^{2}  }  +   \dfrac{1}{ { \beta }^{2} }  }} \\

 \\ { \bold{  \:  \:   \:  \: =   \frac{ { \alpha }^{2} +  { \beta }^{2}  }{ {( \alpha  \beta )}^{2} }   }} \\

 \\ { \bold{  \:  \:  \:  \:   \:  \: =   \frac{  {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta  }{ {( \alpha  \beta )}^{2} }   \:  \:  \:  \:  \:  \: [ \because  \:  \: {(a + b)}^{2} =  {a}^{2}  +  {b}^{2}   + 2ab]  }} \\

• Now put the values –

 \\ { \bold{  \:  \:  \:  \:   \:  \: =   \frac{  {( 1 )}^{2} - 2 ( \dfrac{1}{4} ) }{ {(  \dfrac{1}{4} )}^{2} }  }} \\

 \\ { \bold{  \:  \:  \:  \:   \:  \: =   \frac{ 1 -  \dfrac{1}{2} }{ \dfrac{1}{16} } }} \\

 \\ { \bold{  \:  \:  \:  \:   \:  \: =   \frac{  \dfrac{1}{ \cancel 2} }{ \dfrac{1}{ \cancel {16}} } }} \\

 \\ { \bold{  \:  \:  \:  \:   \:  \: =   8}} \\

• So that –

 \\ { \bold{ \implies \dfrac{1}{ \alpha {}^{2}  }  +   \dfrac{1}{ \beta  {}^{2} }    = 8 }} \\

  \\ \rule{220}{2} \\

Similar questions