Math, asked by dishajain400, 1 month ago

Answer the questions with steps ​

Attachments:

Answers

Answered by mathdude500
36

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha, \: \beta  \: are \: zeroes \: of \: f(x) =  {x}^{2} - px + q

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  +  \beta  =  -  \: \dfrac{( - p)}{1}  = p

Also,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  \beta  = \dfrac{q}{1}  = q

Now,

Consider,

\rm :\longmapsto\:\dfrac{ { \alpha }^{2} }{ { \beta }^{2} }  + \dfrac{ { \beta }^{2} }{ { \alpha }^{2} }

\rm \:  =  \:  \: \dfrac{ { \alpha }^{4}  +  { \beta }^{4} }{ { \alpha }^{2}  { \beta }^{2} }

\rm \:  =  \:  \: \dfrac{ {( { \alpha }^{2}) }^{2}  +  {( { \beta }^{2} )}^{2} }{ {( \alpha  \beta )}^{2} }

We know,

\underbrace{\boxed{ \tt{  {x}^{2} +  {y}^{2}  \:  =  \:  {(x + y)}^{2}  - 2xy}}}

So, using this identity, we get

\rm \:  =  \:  \: \dfrac{ {\bigg( { \alpha }^{2}  +  { \beta }^{2}  \bigg) }^{2}  - 2 { \alpha }^{2}  { \beta }^{2} }{ {( \alpha  \beta )}^{2} }

\rm \:  =  \:  \: \dfrac{ {\bigg( { (\alpha  +  \beta )}^{2}  - 2 \alpha  \beta  \bigg) }^{2}  - 2 { (\alpha  \beta )}^{2} }{ {(\alpha  \beta )}^{2} }

So, on substituting the values, we get

\rm \:  =  \:  \: \dfrac{ {( {p}^{2} - 2q) }^{2}  - 2 {q}^{2} }{ {q}^{2} }

\rm \:  =  \:  \: \dfrac{ {p}^{4}  +  {4q}^{2}  - 4 {p}^{2} q -  {2q}^{2} }{ {q}^{2} }

\rm \:  =  \:  \: \dfrac{ {p}^{4}  +  {2q}^{2}  - 4 {p}^{2} q}{ {q}^{2} }

\rm \:  =  \:  \: \dfrac{ {p}^{4} }{ {q}^{2} }  + \dfrac{ {2q}^{2} }{ {q}^{2} }  - \dfrac{ {4p}^{2} q}{ {q}^{2} }

\rm \:  =  \:  \: \dfrac{ {p}^{4} }{ {q}^{2} }  + 2  - \dfrac{ {4p}^{2}}{ {q}}

\rm \:  =  \:  \: \dfrac{ {p}^{4} }{ {q}^{2} } - \dfrac{ {4p}^{2}}{ {q}} + 2

Hence, Proved

Additional Information :-

\rm :\longmapsto\: \alpha,\beta, \gamma  \: are \: zeroes \: of \: f(x) =   {ax}^{3}  + {bx}^{2}  + cx + d, \: then

\underbrace{\boxed{ \tt{  \alpha +   \beta +   \gamma   =  - \: \dfrac{b}{a} }}}

\underbrace{\boxed{ \tt{  \alpha  \beta +   \beta \:  \gamma  +   \gamma  \alpha   =  \: \dfrac{c}{a} }}}

\underbrace{\boxed{ \tt{  \alpha  \beta \gamma   =  - \: \dfrac{d}{a} }}}

Similar questions