Math, asked by nithyasri1037, 7 hours ago

Answer the second question in the pic will definitely make as brainalist want it soon pls

Attachments:

Answers

Answered by mahavadiharini
0

Answer:

1st question

answer:

15.712 bar

let x = 15.712bar

= 15.712712712

1000x = 15.712

1000x = 15712.712712

x = 15.712

999x = 15696.288

x = 15696.288/ 999

hope it helps you

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \\  \frac{2 \sqrt{3} }{ \sqrt{3} -  \sqrt{2}  }  +  \frac{3 \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ so \: conjugate \: of \:  \sqrt{3 }  -  \sqrt{2}  \: \:  is \:  \:  \sqrt{3}  +  \sqrt{2}  \\ and \: that \: of \:  \sqrt{3 }    +   \sqrt{2}  \: \:  is \:  \:  \sqrt{3}  -  \sqrt{2}

so \: by \:  applying \: \: conjugate \: method \\ we \: get \\  (\frac{2 \sqrt{3} }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  \: ) \:  + ( \frac{3 \sqrt{2} }{ \sqrt{ 3}  +  \sqrt{2} }  \times   \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \: ) \\  \\  =  \frac{2 \sqrt{3}( \sqrt{3}  +  \sqrt{2}  )}{( \sqrt{3}) {}^{2} - ( \sqrt{2}   ) {}^{2} } \:   +  \:  \frac{3 \sqrt{2} ( \sqrt{3}  -  \sqrt{2} )}{( \sqrt{3}) {}^{2}   - ( \sqrt{2} ) {}^{2} }  \\  \\  =  \frac{(2 \times 3) + (2 \times  \sqrt{3}  \times  \sqrt{2} )}{3 - 2}  \:  +  \:  \frac{(3 \times  \sqrt{2} \times  \sqrt{3}  ) - (3 \times 2)}{3 - 2}  \\  \\  =  \frac{(2 \times 3) + (2 \times  \sqrt{ 3}  \times  \sqrt{2} ) +( 3 \times  \sqrt{2} \times  \sqrt{3} ) - (3 \times 2) }{3 - 2}  \\  \\  = 6 + 2 \sqrt{6}  + 3 \sqrt{6}  - 6 \\  = 2 \sqrt{6}  + 3 \sqrt{6}  \\  = 5 \sqrt{6}

Similar questions