CBSE BOARD XII, asked by anuragkumarjaiswal17, 6 months ago

Answer the \sf{{25}^{th}}25
th
question from the attachment.


No spam ⚠️

Quality required
- Explanation
- Non copied ​

Attachments:

Answers

Answered by Anonymous
9

Answer:

Bro this picture is not showing question clearly

Explanation:

Answered by Anonymous
56

Question:-

\rm \: evaluate\: \frac{15}{ \sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80} }evevaluat

\rm \: it \: begin \: given \: that \: \sqrt{5} = 2.236 \: \: and \: \sqrt{10} = 3.162itbegingiventhat

Solution:-

\to \: \rm \: \: \frac{15}{ \sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{80} }→

Now we can write as

\to \: \rm \: \frac{15}{ \sqrt{10} + 2 \sqrt{5} + 2 \sqrt{10} - \sqrt{5} - 4 \sqrt{5} }→

\rm \: \to \: \frac{15}{3 \sqrt{10} - 3 \sqrt{5} }→

Taking common 3 from denominator

\rm \: \to \: \frac{ \not15}{ \not3( \sqrt{10} - \sqrt{5} )}→

We get

\rm \: \to \: \frac{5}{ \sqrt{10} - \sqrt{5} }→

Now value are given

\rm \: \sqrt{10} = 3.162

\rm \: \sqrt{5} = 2.236

We get

\rm \: \frac{5}{3.162 - 2.236}

\rm \: \frac{5}{0.926}

Answer:-

\sf\bold\color{green}{Strong=}{5.399}

Similar questions