Math, asked by Glorious31, 8 months ago

Answer the \sf{{25}^{th}} question from the attachment.


No spam ⚠️

Quality required
- Explanation
- Non copied ​

Attachments:

Answers

Answered by Anonymous
113

Solution

 \rm \to Given \: that \:  \sqrt{5}  = 2.236 \:  \: and \:  \sqrt{10}  = 3.162

 \to \: \rm \:  \:  \dfrac{15}{ \sqrt{10} +  \sqrt{20}   +  \sqrt{40}  -  \sqrt{5}  -  \sqrt{80} }

Now we can write as

 \to \:  \rm \:  \dfrac{15}{ \sqrt{10} + 2 \sqrt{5}   + 2 \sqrt{10}  -  \sqrt{5} - 4 \sqrt{5}  }

 \rm \:  \to \:  \dfrac{15}{3 \sqrt{10} - 3 \sqrt{5}  }

Taking common 3 from denominator

 \rm \:  \to \:  \frac{ \not15}{  \not3( \sqrt{10} -  \sqrt{5}  )}

We get

 \rm \:  \to \:  \dfrac{5}{ \sqrt{10}  -  \sqrt{5} }

Now value are given

 \rm \to \sqrt{10}  = 3.162

 \rm \to  \sqrt{5}  = 2.236

We get

 \rm \to \dfrac{5}{3.162 - 2.236}

 \rm \to  \dfrac{5}{0.926}

Answer:-

 \rm \to  5.399


TheMoonlìghtPhoenix: Great!
Answered by Anonymous
202

 \red{\underline{{ \bf Question }}}

  •   \bf{ Evaluate \: \dfrac{15}{ \sqrt{10} +  \sqrt{20} +  \sqrt{40} -  \sqrt{5}  -  \sqrt{80}  }  }

 \underline {\underline{{\purple{ \sf Solution }}}}

  \sf{  \implies\dfrac{15}{ \sqrt{10} +  \sqrt{20} +  \sqrt{40} -  \sqrt{5}  -  \sqrt{80}  }  }

 \sf{  \implies\dfrac{15}{ \sqrt{10} +  \sqrt{4 \times 5} +  \sqrt{4 \times 10} -  \sqrt{5}  -  \sqrt{16 \times 5}  }  }

 \sf{  \implies\dfrac{15}{ \sqrt{10} + 2 \sqrt{5} +  2\sqrt{ 10} -  \sqrt{5}  -  4\sqrt{5}  }  }

 \sf{  \implies\dfrac{15}{ \sqrt{10} (1 + 2) +  \sqrt{5}  (2 - 1 - 4) }  }

 \sf{  \implies\dfrac{15}{ 3\sqrt{10} +  \sqrt{5} ( - 3)  }  }

\sf{  \implies\dfrac{15}{ 3\sqrt{10} +3  \sqrt{5}  }  }

\sf{  \implies\dfrac{ \cancel{15}}{ \cancel{3}( \sqrt{10} +  \sqrt{5} )  }  }

\sf{  \implies\dfrac{5}{ \sqrt{10} +  \sqrt{5} }  }

 \pink { \rm Now, rationalising \: the \: denominatior }

\sf{  \implies\dfrac{5}{ \sqrt{10} +  \sqrt{5} }  }  \times  \dfrac{ \sqrt{10} +  \sqrt{5}  }{ \sqrt{10}  +  \sqrt{5} }

\sf{  \implies\dfrac{5( \sqrt{10}  +  \sqrt{5} )}{ ( \sqrt{10} {)}^{2}  - ( \sqrt{ {5}})^{2}   } }

\sf{  \implies\dfrac{5( \sqrt{10}  +  \sqrt{5} )}{ ( 10 - 5 )} }

\sf{  \implies\dfrac{ \cancel{5}( \sqrt{10}  +  \sqrt{5} )}{  \cancel{5}} }

\sf{  \implies\  \sqrt{10}  +  \sqrt{5} }

 \green{ \tt Therefore,  Subsisting \: Values \: for  \sqrt{5} \: and \sqrt{10}  }

\sf{  \implies\  3.162 + 2.236 }

\sf{  \implies\  5.398 }

Thus, the final answer is 5.398


TheMoonlìghtPhoenix: Great!
Similar questions