Answer the two questions in attachment. Class X trigonometry...
Answers
Answers:-
Solution:-
L.H.S.
L.H.S. = R.H.S.
Hence Proved!
Identity Used:-
- tanθ = 1/cotθ
- [ a³ - b³ ] = [ (a - b)(a² + b² + ab) ]
(2)
Given:-
- 3 sinθ + 5 cosθ = 5
To Prove:-
- 5 sinθ - 3 cosθ = ± 3
Proof :-
3 sinθ + 5 cosθ = 5
Squaring on both sides,
=) [ 3 sinθ + 5 cosθ ]² = 5²
=) 9 sin²θ + 25 cos²θ + 30 sinθ.cosθ = 25
=) 9 (1 - cos²θ) + 25 (1-sin²θ) + 30 sinθ.cosθ = 25
=) 9 - 9cos²θ + 25 - 25sin²θ + 30 sinθ.cosθ = 25
=) - ( 9cos²θ + 25sin²θ - 30 sinθ.cosθ ) = 25 - 25 - 9
=) - ( 9cos²θ + 25sin²θ - 30 sinθ.cosθ ) =- 9
=) 9cos²θ + 25sin²θ - 30 sinθ.cosθ = 9
=) ( 5 sinθ )² + ( 3 cosθ )² - (2)(5 sinθ)(3cosθ) = 9
=) [ 5sinθ - 3cosθ ]² = 9
=) 5sinθ - 3cosθ = √9
=) 5sinθ - 3cosθ = ±3
Hence Proved!
Identity Used:-
- sin²θ = ( 1 - cos²θ )
- ( a - b)² = a² + b² - 2ab
Q} 2
SOLUTION÷
Given:-
(1)3 sinθ + 5 cosθ = 5
To Prove:-
5 sinθ - 3 cosθ = ± 3✔✔
Proof :-
3 sinθ + 5 cosθ = 5 (Given)
Squaring on both sides,
=) [ 3 sinθ + 5 cosθ ]² = 5²
=) 9 sin²θ + 25 cos²θ + 30 sinθ.cosθ = 25
[( a - b)² = a² + b² - 2ab]
=) 9 (1 - cos²θ) + 25 (1-sin²θ) + 30 sinθ.cosθ = 25 [sin²θ = ( 1 - cos²θ )]
=) 9 - 9cos²θ + 25 - 25sin²θ + 30 sinθ.cosθ = 25
=) - ( 9cos²θ + 25sin²θ - 30 sinθ.cosθ ) = 25 - 25 - 9
=) - ( 9cos²θ + 25sin²θ - 30 sinθ.cosθ ) =- 9
=) 9cos²θ + 25sin²θ - 30 sinθ.cosθ = 9
=) ( 5 sinθ )² + ( 3 cosθ )² - (2)(5 sinθ)(3cosθ) = 9
=) [ 5sinθ - 3cosθ ]² = 9 [( a - b)² = a² + b² - 2ab]
=) 5sinθ - 3cosθ = √9
=) 5sinθ - 3cosθ = ±3
PROVED
I HOPE YOU WILL UNDERSTAND THE ATTACMENT AND THIS ANSWER ALSO .
IT MIGHT CLEAR YOUR DOUBTS.