Math, asked by CuteBunny21, 1 day ago

Answer these question
don't spam​

Attachments:

Answers

Answered by JenniferAk
26

Answer:

Refer to the image

Step-by-step explanation:

Hope that helps!! :)

Attachments:
Answered by KimBunny02
81

Step-by-step explanation:

 \mathsf{Given:- DP = BQ}

\mathsf{Proof:-}

\mathsf{(i) }

 \mathsf{AD=BC (Opposite  \: side  \: of  \: parallelogram)}

 \mathsf{DP=BQ     (Given)}

 \mathsf{∠ ADP=∠QBC    ( Alternate \:  angles \:  parallel  \: sides)}

 \mathsf{By  \: SAS}

\mathsf{∴∆APD≅∆CQB}

 \mathsf{(ii)}

\mathsf{By \:  CPCT - Corresponding \:  parts \:  of  \: congruent  \: triangle}

\mathsf{∴AP=CQ}

\mathsf{(iii) }

 \mathsf{AB=CD   (Opposite \:  sides \:  of  \: parallelogram)}

 \mathsf{DP=BQ   (Given)}

 \mathsf{∠PDC=ABQ    ( Alternate \:  angles  \: of  \: parallel \:  sides)}

\mathsf{By \:  SAS}

\mathsf{∴∆AQB≅∆ACPD}

 \mathsf{(iv)}

 \mathsf{By  \: CPCT- Corresponding \:  parts \:  of \:  congruent \:  triangle}

\mathsf{AQ=CP}

 \mathsf{AP=CQ \:  \:  \:  This  \: are  \: equal.}

\mathsf{AQ=CP  \: This \:  are \:  equal}

\mathrm{∴APCQ \:  is \:  a  \: parallelogram.}

Similar questions