English, asked by Anonymous, 5 months ago

answer thik hai ya nahi nahi hai to tum THIK answer do mujhe​

Attachments:

Answers

Answered by sanpreetpachhala
1

Answer:

Here's your answer! Dear friend

X=5/2

Attachments:
Answered by Anonymous
30

Given:

 {4}^{x}  +  {4}^{x}  = 64

To Find:

Value of x

Solution:

 {4}^{x}  +  {4}^{x}  = 64

Let us understand first how to simplify this.

If we take 3^2+3^2, then the sum is 18 not 81. So, if two same bases with same powers are to be added we multiply the base with 2, i.e., 2\times3^2\:i.e., 2\times9=18.

So, in this question it will be 2\times4^x in LHS.

2 \times  {4}^{x}  = 64 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  {4}^{x}  =  \dfrac{64}{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  ({(2)^{2} )}^{x}  = 32  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  {2}^{2x}  =  {2}^{5}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{comparing \: powers \: we \: get} \\  \\ 2x = 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ x =   \frac{5}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hope it helps U.

Have a great day ahead

Similar questions