Math, asked by Abhishek5501, 3 months ago

Answer this 23th question rightly and I'll mark it as brainliest.​

Attachments:

Answers

Answered by anindyaadhikari13
5

Required Answer:-

Given to prove:

  •  \sf \small \dfrac{c - b\cos(A) }{b - c \cos(A) }  =  \dfrac{ \cos(B) }{ \cos(C) }

Proof:

By cosine formula, we get,

 \sf \mapsto \cos(A)  = \small \dfrac{ {b}^{2} +  {c}^{2} -  {a}^{2}  }{2bc}

 \sf \mapsto \cos(B)  = \small \dfrac{ {a}^{2}  +  {c}^{2} -  {b}^{2} }{2ac}

 \sf \mapsto \cos(C)  = \small \dfrac{ {a}^{2} +  {b}^{2} -  {c}^{2}  }{2ab}

Taking LHS,

 \sf \small \dfrac{c - b\cos(A) }{b - c \cos(A) }

 \sf =  \dfrac{c - b \bigg( \dfrac{ {b}^{2} +  {c}^{2} -  {a}^{2} }{2bc}  \bigg)}{b - c \bigg(  \dfrac{ {b}^{2}  +  {c}^{2} -  {a}^{2}  }{2bc} \bigg)}

 \sf =  \dfrac{c -  \bigg( \dfrac{ {b}^{2} +  {c}^{2} -  {a}^{2} }{2c}  \bigg)}{b - \bigg(  \dfrac{ {b}^{2}  +  {c}^{2} -  {a}^{2}  }{2b} \bigg)}

 \sf =  \dfrac{\bigg( \dfrac{ 2 {c}^{2} - ({b}^{2} +  {c}^{2} -  {a}^{2}) }{2c}  \bigg)}{\bigg(  \dfrac{2 {b}^{2} - ( {b}^{2}  +  {c}^{2} -  {a}^{2}  )}{2b} \bigg)}

 \sf =  \dfrac{\bigg( \dfrac{  {a}^{2} + {c}^{2}  -  {b}^{2} }{2c}  \bigg)}{\bigg(\dfrac{ {a}^{2}  +  {b}^{2} - {c}^{2}}{2b} \bigg)}

 \sf =  \dfrac{\bigg( \dfrac{  {a}^{2} + {c}^{2}  -  {b}^{2} }{2ac}  \bigg)}{\bigg(\dfrac{ {a}^{2}  +  {b}^{2} - {c}^{2}}{2ab} \bigg)}

 \sf =  \dfrac{ \cos(B) }{ \cos(C) }

Taking RHS,

 \sf =  \dfrac{ \cos(B) }{ \cos(C) }

Hence, LHS = RHS (Proved)

Similar questions