Math, asked by kishallmanchi, 5 months ago

answer this.....,. ​

Attachments:

Answers

Answered by itzpriya22
1

Question:-

\sf If  \: \dfrac{(x - 2\sqrt{6})(5\sqrt{3} + 5\sqrt{2})}{5\sqrt{3} - 5\sqrt{2}} = 1

then find the value of x.

Solution:-

\sf \implies \dfrac{(x - 2\sqrt{6})(5\sqrt{3} + 5\sqrt{2})}{5\sqrt{3} - 5\sqrt{2}} = 1

\sf  \implies (x - 2\sqrt{6})(5\sqrt{3} + 5\sqrt{2}) = 5\sqrt{3} - 5\sqrt{2}

\sf \implies x - 2\sqrt{6} =  \dfrac{5\sqrt{3} - 5\sqrt{2}}{5\sqrt{3} + 5\sqrt{2}}

By rationalizing the denominator:-

\sf \implies x - 2\sqrt{6} =  \dfrac{5\sqrt{3} - 5\sqrt{2}}{5\sqrt{3} + 5\sqrt{2}} \times  \dfrac{5\sqrt{3} - 5\sqrt{2}}{5\sqrt{3} - 5\sqrt{2}}

\sf \implies x - 2\sqrt{6} =   \dfrac{(5\sqrt{3} - 5\sqrt{2})^{2} }{(5\sqrt{3})^{2}  - (5\sqrt{2})^{2} }

\sf \implies x - 2\sqrt{6} =   \dfrac{(5\sqrt{3})^{2}   +  (5\sqrt{2})^{2}  - 2(5 \sqrt{3})(5 \sqrt{2})}{75  - 50}

\sf \implies x - 2\sqrt{6} =   \dfrac{75  +  50  - 50 \sqrt{6} }{25}

\sf \implies x - 2\sqrt{6} =   \dfrac{125 - 50 \sqrt{6} }{25}

\sf \implies x - 2\sqrt{6} =   \dfrac{25(5 - 2 \sqrt{6}) }{25}

\sf \implies x - 2\sqrt{6} =   5 - 2 \sqrt{6}

Comparing LHS and RHS:-

\sf \implies x =   5

\sf  \large\dashrightarrow \underline{ \boxed{ \therefore \textsf{ \textbf{The \: value \: of \: x = 5}} }}

\sf \underline{\:\: \underline{\: Option \: (4) \: is \: correct \:}\:\:}

Similar questions