Math, asked by lucky1638, 6 months ago

answer this??!!!!!!!!!!!!

Attachments:

Answers

Answered by MrDRUG
3

Given :

y = 5(x² + 3x + 2)³

To Find :

\sf{\dfrac{dy}{dx}}

Solution :

Let x² + 3x + 2 = u. Then y = 5u³

Differentiating y with respect to u ;

 \\  : \implies \bf \:  \frac{dy}{du}  =  \frac{d}{du} (5u {}^{3} ) \\

• By applying , \bf{\dfrac{d}{dx}(x^n)=\dfrac{d}{dx}(nx^{n-1})}. We get ;

 \\   : \implies \bf \:  \frac{dy}{du}  =   (15u {}^{2} ) \sf \: ..........(1)

Now , differentiating u with respect to x ;

 \\   : \implies \bf \:  \frac{du}{dx}  =  \frac{d}{dx} ( {x}^{2}  + 3x + 2) \\

 \\   : \implies \bf \:  \frac{du}{dx}  =  \frac{d}{dx} ( {x}^{2} ) +  \frac{d}{dx} (3x) +  \frac{d}{dx} (3) \\

• By applying , \bf{\dfrac{d}{dx}(x^n)=\dfrac{d}{dx}(nx^{n-1})}. We get ;

 \\   : \implies \bf \:  \frac{du}{dx}  =  \frac{d}{dx} (2 {x}^{2 - 1} ) +  \frac{d}{dx} (3 \times 1 {x}^{1 - 1} ) +  \frac{d}{dx} (2) \\

 \\   : \implies \bf  \frac{du}{dx}  =   2x + 3 \times 1 {x}^{0}  +  \frac{d}{dx} (2) \\

We know that a⁰ = 1. ;

 \\   : \implies \bf \:  \frac{du}{dx}  = 2x + 3(1) +  \frac{d}{dx}(2)  \\

 \\ : \implies \bf \:  \frac{du}{dx}  = 2x + 3 +  \frac{d}{dx} (2) \\

Differentitation of a Constant is "zero".

 \\    : \implies \bf \:  \frac{du}{dx}  = 2x + 3 + 0 \\

 \\   : \implies \bf  \frac{du}{dx}  = 2x + 3  \sf \: ...........(2)\\

Now by applying chain rule i.e ,

 \\  : \implies \bf \:  \frac{dy}{du}.\frac{du}{dx}  =  \frac{dy}{dx}

From eq(1) & eq(2) . We get ;

 \\   : \implies \bf \:  \frac{dy}{dx}  = 15 {u}^{2}  \times (2x + 3) \\

Since u = x² + 3x + 2 ;

 \\  : \implies {\underline{\boxed{\bf \:  \frac{dy}{dx}  = 15( {x}^{2}  + 3x + 2) {}^{2}  \times 2x + 3}}}

Similar questions