Math, asked by agnivesh12, 1 year ago

answer this anybody​

Attachments:

Answers

Answered by Anonymous
10

\boxed{\textbf{\large{Step-by-step explanation}}}

 \sqrt{ \frac{y}{x} }  +  \sqrt{ \frac{x}{y} }  = 2 \\

  \\ \frac{dy}{dx}  =  ?

 \sqrt{ \frac{x}{y} }  +   \sqrt{ \frac{y}{x} }  = 2 \\  \\

 \frac{ \sqrt{ {x}^{2}  }  +  \sqrt{ {y}^{2} } }{ \sqrt{xy} }  = 2 \\

 \sqrt{ {x}^{2} }  +  \sqrt{ {y}^{2} } = 2 \sqrt{xy }  \\

◾Squaring on both sides ,

x^2 + 2xy + y^2 = 4xy

◾[here we have used ( a + b) ^2 = a^2 + 2ab + b^2 identity for the squaring of  (\sqrt{ {x}^{2} }  +  \sqrt{ {y}^{2} }) ]

x^2 + y^2 = 4xy - 2xy

x^2 + y^2 = 2xy

x^2 + y^2 = xy + xy

x^2 - xy  = xy - y^2

x (x  -  y)= y ( x - y)

\frac{(x - y)}{(x - y) }=\frac{y}{x}

\frac{y}{x} = 1

Therefor ,

y = x

◾Now, differentiate wrt x ,we get

\frac{dy}{dx} = \frac{d}{dx} ( x)

\frac{dy}{dx} = 1

\boxed{\textbf{\large{ dy /dx = 1}}}

__________________________________

Derivatives of some standard composite functions :

1] y =[ f(x) ]^n

➡ dy / dx = n[f(x)]^(n - 1)x f'(x )

2] y = sin f (x)

➡dy / dx = cos f (x) x f' (x)

3] y = √ ( f (x ) )

➡dy / dx =( 1 / 2 √[ f(x)]) x f'(x )

4] y = k

➡ dy / dx = 0 [ Note : it is not a composite function ]

5] y = cos f (x )

➡ dy /dx = -sin f (x) x f'(x )

6] y = e^([f (x) ])

➡dy /dx = e^([f (x) ]) x f'(x)

7] y = a^[f(x)]

➡ dy /dx = a^[ f (x) ] x log a x f'(x)

8] y = log [f (x) ]

➡dy /dx =( 1 / f (x) ) x [f'(x) ]

__________________________________

Similar questions