answer this anybody
Attachments:
![](https://hi-static.z-dn.net/files/d03/e6308849cd27f3d2dcf2b81945a1e400.jpg)
Answers
Answered by
10
◾Squaring on both sides ,
◾[here we have used
identity for the squaring of
]
⟹ ![x^2 + y^2 = 4xy - 2xy x^2 + y^2 = 4xy - 2xy](https://tex.z-dn.net/?f=x%5E2+%2B+y%5E2+%3D+4xy+-+2xy)
⟹ ![x^2 + y^2 = 2xy x^2 + y^2 = 2xy](https://tex.z-dn.net/?f=x%5E2+%2B+y%5E2+%3D+2xy)
⟹ ![x^2 + y^2 = xy + xy x^2 + y^2 = xy + xy](https://tex.z-dn.net/?f=x%5E2+%2B+y%5E2+%3D+xy+%2B+xy+)
⟹ ![x^2 - xy = xy - y^2 x^2 - xy = xy - y^2](https://tex.z-dn.net/?f=x%5E2+-+xy++%3D+xy+-+y%5E2)
⟹ ![x (x - y)= y ( x - y) x (x - y)= y ( x - y)](https://tex.z-dn.net/?f=x+%28x++-++y%29%3D+y+%28+x+-+y%29+)
⟹ ![\frac{(x - y)}{(x - y) }=\frac{y}{x} \frac{(x - y)}{(x - y) }=\frac{y}{x}](https://tex.z-dn.net/?f=%5Cfrac%7B%28x+-+y%29%7D%7B%28x+-+y%29+%7D%3D%5Cfrac%7By%7D%7Bx%7D)
⟹ ![\frac{y}{x} = 1 \frac{y}{x} = 1](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7Bx%7D+%3D+1)
Therefor ,
◾Now, differentiate wrt x ,we get
__________________________________
Derivatives of some standard composite functions :
1] y =[ f(x) ]^n
➡ dy / dx = n[f(x)]^(n - 1)x f'(x )
2] y = sin f (x)
➡dy / dx = cos f (x) x f' (x)
3] y = √ ( f (x ) )
➡dy / dx =( 1 / 2 √[ f(x)]) x f'(x )
4] y = k
➡ dy / dx = 0 [ Note : it is not a composite function ]
5] y = cos f (x )
➡ dy /dx = -sin f (x) x f'(x )
6] y = e^([f (x) ])
➡dy /dx = e^([f (x) ]) x f'(x)
7] y = a^[f(x)]
➡ dy /dx = a^[ f (x) ] x log a x f'(x)
8] y = log [f (x) ]
➡dy /dx =( 1 / f (x) ) x [f'(x) ]
__________________________________
Similar questions