Math, asked by Anonymous, 8 months ago

Answer this as soon as possible and don't attempt if you don't know. Thanks!​

Attachments:

Answers

Answered by Anonymous
23

 \largeɢɪᴠᴇɴ \: :  \frac{ \cos \: A -  \sin \: A + 1  }{ \cos \: A +  \sin \: A - 1  }  = \cosec \: A +  \cot \: A

  \largeᴛᴏ  \: ᴘʀᴏᴠᴇ : LHS=RHS

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathcal\pink{\boxed{\boxed{Solution}}}

LHS = \frac{ \cos \: A -  \sin \: A + 1  }{ \cos \: A +  \sin \: A - 1  }

Divide and Multiply by sin A,

  \large= \frac{  \sin \: A (\cos \: A -  \sin \: A + 1  )}{ \sin \: A  (\cos \: A +  \sin \: A - 1)  }

 \large = \frac{  \sin \: A \cos \: A -  \ { \sin  \: A }^{2} +  \sin \: A }{ \sin \: A  (\cos \: A +  \sin \: A - 1)  }

  \large = \frac{  \sin \: A \cos \: A  +  \ { \sin  \: A }  - (1 -   {\cos \: }^{2} A)  }{ \sin \: A  (\cos \: A +  \sin \: A - 1)  }

 \large =  \frac{  \sin \: A (\cos \: A  +1)  \ - (1 -   {\cos \: } A) (1  +   {\cos \: } A) }{ \sin \: A  (\cos \: A +  \sin \: A - 1)  }

 \large = \frac{ (1  +   {\cos \: }A) (\sin A  + \cos A  - 1) }{ \sin A  (\cos A +  \sin \: A - 1)  }

 \large =  \frac{1 +  \cos A }{ \sin A}

 \large =  \frac{1}{ \sin A }  +  \frac{ \cos A }{ \sin A }

 \large = cosec A +  \cot A

=RHS

Therefore LHS=RHS

Hence Proved..

\large\sf\underline{\orange{Hope \:  It  \: Helps \:  You!}}

Similar questions