Math, asked by vojukos, 1 year ago

answer this easy question and earn 49 points

Attachments:

Answers

Answered by ans81
47
 <b>Answer :</b>

➡️ x^2 + 1/x^2 = 7
➡️ x^3 + 1/x^3 = 18
➡️ x^4 + 1/x^4 =47
 <b>Step-by-step explanation :</b>

x+1/x=3

squaring both sides

x2+1/x2=32

x2+1/x2=9

x2+1/x2=9-2

x2+1/x2=7

_____________

To find :- x^3 + 1/x^3

Given: x+1/x = 3

Cubing both sides

(x+1/x)^3 = 3^3

Now, using the formula ( a+b)^3

x^3 + 1/x^3 + 3× x × 1/x ( x+ 1/x) = 27

x^3 + 1/x^3 + 3 (x+1/x) = 27

A/q: x+ 1/x = 3

x^3 + 1/x^3 + 3 (3) = 27

x^3 + 1/x^3 = 27-9

x^3 + 1/x^3 = 18

______________
➡️ x^4 + 1/x^4

➡️ Given

x+1x=3x+1x=3

Taking square on both sides

(x+1x)2=32x+1x)2=32

x2+1x2+2=9x2+1x2+2=9

x2+1x2=9−2x2+1x2=9−2

x2+1x2=7x2+1x2=7

Again taking square on both sides, we have

(x2+1x2)2=72(x2+1x2)2=72

(x2)2+(1x2)2+2=49(x2)2+(1x2)2+2=49

x4+1x4=49−2x4+1x4=49−2

x4+1x4=47

____________

Hope it will help you

@thanksforquestion

@bebrainly


Answered by Anonymous
12
\textbf{\huge{ANSWER:}}

\sf{Given:}

 {x}  +   \frac{1}{ {x}}  = 3 \\

Now,

 {(x +  \frac{1}{x} )}^{2}   =  {3}^{2} \\  \\  =  >  {x}^{2}  +   \frac{1}{ {x}^{2} }   + 2 =9 \\  \\  =  >    {x}^{2}  +   \frac{1}{ {x}^{2} }  = 7

Next,

 {(x +  \frac{1}{x} )}^{3}  =    {3}^{3} \\  \\  =  > {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(x +  \frac{1}{x} ) = 27 \\  \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 9 = 27 \\  \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} } = 18

At last,

 {( {x}^{2}  +  \frac{1}{ {x}^{2} } )}^{2}  =  {7}^{2}  \\  \\  =  >  {x}^{4}  +  \frac{1}{ {x}^{4} }   + 2 = 49 \\  \\  =  >   {x}^{4}  +  \frac{1}{ {x}^{4} }    = 47
Identities used:
 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

 {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)

Hope it Helps!!
Similar questions