Answer this fast....
Attachments:
Answers
Answered by
1
Step-by-step explanation:
(1+sec)cosec + cosec(1+sec) =2 cosec3(sec−1)
To find
L.H.S =R.H.S
Solution=>In the given equation we assume the value is given in thetha
from then question is:
(1+secθ) + cosecθ =2 cosec3θ(secθ−1)
cosecθ (1+secθ)
Solve L.H.S part:
⇒ (1+secθ) + cosecθ
cosecθ (1+secθ)
⇒ (1+secθ)2 + cosec2θ
θ cosecθ +(1+secθ)
⇒ cosec2θ + 1 + sec2θ
cosecθ+(1+secθ)
Solve R.H.S part:
⇒2 cosec3θ (secθ−1)
⇒2 1 ( 1 - 1 )
sin3θ cosθ
⇒2 1 ( 1 - cosθ )
sin3θ cosθ
⇒ 2−2cosθ
sin3θcosθ
sin3θcosθif we change the value is sin and cos so, it will prove the R.H.S part that's why we can say that:
L.H.S≠R.H.S
Similar questions