Math, asked by ppoojakewat200, 4 months ago

answer this guys(✷‿✷)(✷‿✷)​

Attachments:

Answers

Answered by Ranveerx107
1

\huge\rm{\bold{\underline{\underline{Anwer:-}}}}

\bold{\rm{\underline{\bigstar{Given:-}}}}

In the given figure-

✳ABCD is a quadrilateral.

✳P, Q, R, S are the points of trisection of the sides AB, BC, CD and DA respectively.

\bold{\rm{\underline{\bigstar{To\:prove:-}}}}

PQRS is a parallelogram.

\bold{\rm{\underline{\bigstar{Proof:-}}}}

\large\sf{In\:\triangle ABC -}

\large\sf{  \frac{AP}{PB}  =  \frac{1}{2}  ........(i)}

\large\sf{and\:  \frac{CQ}{QB}  =  \frac{1}{2 } ........(ii) }

Since, P and Q are the points of trisection of sides AB and BC respectively.

\large\sf{From\:equation\:(i) \:and\:(ii) -}

\large\sf{\implies\:\frac{AP}{PB}  =  \frac{CQ}{QB}     }

\large\sf{Therefore,\: PQ \:ll \:AC}

(By the converse of Basic Proportionality Theorem. )

\large\sf{   In\:\triangle ADC -}

\large\sf{    \frac{AS}{SD}  =  \frac{1}{2}  ........(iii) }

\large\sf{  and\:  \frac{CR}{RD}  =  \frac{1}{2}  ........(iv)  }

Since, R and S are the points of trisection of sides CD and DA respectively.

\large\sf{  From\:equation\:(iii) \:and\:(iv) -  }

\large\sf{\implies\:    \frac{AS}{SD}  =  \frac{CR}{RD} }

\large\sf{  Therefore,\: SR \:ll \:AC.  }

(By the converse of Basic Proportionality Theorem. )

\large\sf{Therefore,  PQ \:ll \:SR. }

(Since, PQ II AC & SR II AC)

\large\sf{Similarly,\:by\:joining\:BD\:we \:can\: }

\large\sf{  prove \:that \:SP\:II\:RQ. }

\large\sf{As \: SR \:ll \:PQ\:and \:  SP\:II\:RQ,\:therefore-   }

\large\sf{  PQRS \:is\: a\: parallelogram.  }

\large\sf{Hence\:proved. }

Similar questions