Math, asked by vedantchaubey, 8 months ago

answer this guys help urgent​

Attachments:

Answers

Answered by Anonymous
3

Answer:

 \sec \: a =  \frac{ {x}^{2}  + 1}{2x}

Explanation:

Given:

sec \: a +  \: tan \: a = x \: .............(i)

Steps:

Method 1:

We can write above equation as below:

 \sec \: a = x -  \tan \: a

Squaring both sides, we get:

We know that,

(a - b)^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

 { \sec}^{2}  \: a =  { x}^{2}  +  { \tan}^{2}  \: a - 2 \: x \tan \: a

 { \sec }^{2}  \: a -  { \tan }^{2}  \: a =  {x}^{2}  - 2 \: x \tan \: a

We know that,

 { \sec}^{2}  \: a -  { \tan }^{2}  \: a = 1

Substituting the value in above equation, we get:

1 =  {x}^{2}  - 2  \: x \tan \: a

We can write the above equation as below:

1 -  {x}^{2}  =  - 2  \: x\tan \: a

 {x}^{2}  - 1 = 2 \: x \tan \: a

  \frac{ {x}^{2} - 1 }{2x}  =  \tan \: a

Substituting the value of tan a in equation (i), we get:

 \sec \: a +  \frac{ {x}^{2} - 1 }{2x}  = x

 \sec \: a = x -  \frac{ {x}^{2}  - 1}{2x}

 \sec \: a =  \frac{2 {x}^{2}  -  {x}^{2} - 1 }{2x}

 \sec \: a =  \frac{ {x}^{2}  - 1}{2x}

Method 2:

We know that,

 { \sec}^{2}  \: a -  { \tan }^{2}  \: a = 1

We know that,

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

We can write,

 { \sec}^{2} \: a -  { \tan}^{2}  \: a = ( \sec \: a +  \tan \: )( \sec \: a -  \tan \: a)

( \sec \: a +  \tan \: a)( \sec \: a -  \tan \: a) = 1

It is given in the question,

(\sec \: a +  \tan \: a) = x

Substituting this value in above equation, we get:

x( \sec \: a -  \tan \: a) = 1

We can write above equation as below:

 \sec  \: a-  \tan \: a =  \frac{1}{x}

Adding the above equation to (i), we get:

2 \sec \: a = x +  \frac{1}{x}

Taking LCM and adding, we get:

2 \sec \: a =  \frac{ {x}^{2} + 1 }{x}

We can write the above equation as below:

  \sec \: a =  \frac{ {x}^{2} + 1 }{2x}

Therefore, the answer is:

 \frac{ {x}^{2} + 1 }{2x}

Similar questions