Physics, asked by ss8534450, 1 year ago

Answer this I will mark as brainliest it's urgent please ​

Attachments:

Answers

Answered by ShivamKashyap08
1

Answer:

  • The Mass (M) required to Break the Wire is 120 Kg.

Given:

  1. Mass Suspended (M₁) = 30 Kg.

Explanation:

As Given Diameter is Twice than the Initial Diameter.

as We Know,

D ∝r

  • D Denotes Diameter.
  • r Denotes Radius.

Therefore,

Radius is Twice than the Initial Radius.

2r₁ = r₂

\rule{300}{1.5}

From Breaking Stress Formula,

\large\bigstar\: {\boxed{\tt S = \dfrac{F}{A}}}

\bold{Here}\begin{cases}\text{S Denotes Breaking Stress} \\ \text{F Denotes Breaking Force} \\ \text{A Denotes Area}\end{cases}

Now,

\large{\boxed{\tt S = \dfrac{F}{A}}}

Substituting the values,

\large{\tt \longmapsto S = \dfrac{M \times g}{A}}

  • As the Force is Caused due to the Weight of the wire.

\large{\tt \longmapsto S = \dfrac{M \times g}{ \pi (r)^2}}

  • As the Area will be πr² ( Circular base )

\large{\tt \longmapsto S = \dfrac{M_1 \times g}{ \pi (r_1)^2}}

Substituting,

\large{\tt \longmapsto S = \dfrac{30 \: Kg\times g}{ \pi (r_1)^2}}

\large{\tt \longmapsto S = \dfrac{30 \times g}{ \pi r_1^2}}

\large\longmapsto{\underline{\boxed{\tt S = \dfrac{30g}{r_1^2 \pi}}}}

\rule{300}{1.5}

\rule{300}{1.5}

Now, This Breaking Stress is There,

From Breaking Stress Formula,

\large\bigstar\: {\boxed{\tt S = \dfrac{F}{A}}}

\bold{Here}\begin{cases}\text{S Denotes Breaking Stress} \\ \text{F Denotes Breaking Force} \\ \text{A Denotes Area}\end{cases}

Now,

\large{\boxed{\tt S = \dfrac{F}{A}}}

Substituting the values,

\large{\tt \longmapsto S = \dfrac{M_2 \times g}{A}}

  • As the Force is Caused due to the Weight of the wire.

\large{\tt \longmapsto S = \dfrac{M \times g}{ \pi (r)^2}}

  • As the Area will be πr² ( Circular base )

\large{\tt \longmapsto S = \dfrac{M_2 \times g}{ \pi (r_2)^2}}

Substituting,

\large{\tt \longmapsto \dfrac{30g}{\pi r_1^2} = \dfrac{M_2 \times g}{ \pi (r_2)^2}}

\large{\tt \longmapsto \Bigg[\dfrac{30}{r_1^2}\Bigg] \times \dfrac{g}{\pi} = \Bigg[\dfrac{M_2 }{(r_2)^2}\Bigg] \times \dfrac{g}{\pi}}

\large{\tt \longmapsto \Bigg[\dfrac{30}{r_1^2}\Bigg] \times \cancel{\dfrac{g}{\pi}} = \Bigg[\dfrac{M_2 }{(r_2)^2}\Bigg] \times \cancel{\dfrac{g}{\pi}}}

\large{\tt \longmapsto \Bigg[\dfrac{30}{r_1^2}\Bigg]  = \Bigg[\dfrac{M_2 }{(r_2)^2}\Bigg]}

As we Know,

  • 2r₁ = r₂.

\large{\tt \longmapsto \Bigg[\dfrac{30}{r_1^2}\Bigg]  = \Bigg[\dfrac{M_2 }{(2 r_1)^2}\Bigg]}

\large{\tt \longmapsto \dfrac{30}{r_1^2} = \dfrac{M_2 }{4 r_1^2}}

\large{\tt \longmapsto \dfrac{30}{\cancel{r_1^2}} = \dfrac{M_2 }{4 \cancel{r_1^2}}}

\large{\tt \longmapsto 30 = \dfrac{M_2}{4}}

\large{\tt \longmapsto M_2 = 30 \times 4}

\huge{\boxed{\boxed{\tt M_2 = 120 \: Kg}}}

The Mass (M₂) required to Break the Wire is 120 Kg.

\rule{300}{1.5}

Similar questions