Physics, asked by amenhotep, 11 months ago

Answer this.
JEE

Dont Google​

Attachments:

Answers

Answered by KINGofDEVIL
72

 \huge \blue{\boxed{ \underline{ \overline{ \mathbb \red{ANSWER}}}}}

GIVEN :

Length of the wire = 2m

Length of extension = 2mm

\sf{= \: 2 \times  {10}^{ - 3} m}

Area of the Cross section \sf{ = 4 {mm}^{2} }

\sf{   = 4 \times  {10}^{ - 6} }

Youngs Modulus,  \sf{ Y \:  =  \: 2 \times  {10}^{11}  {m}^{ - 2} }

SOLUTION :

We've,

  \sf{ Strain =  \frac{  2 \times  {10}^{ - 3} }{2}}

  \sf{ Strain =  \frac{  \Delta \: l}{l}  }

\boxed{\sf{ Strain =  {10}^{ - 3}}}

Now, let us find out the Stress

  \sf{ Stress =Y \times  \frac{  \Delta \: l}{l}  }

  \sf{ Stress =2 \times  {10}^{11} \times ( \frac{  2 \times  {10}^{ - 3} }{2} )}

\boxed{\sf{ Stress =2 \times  {10}^{8} \:  { N m}^{ - 2}}}

Now, By using the formula of Elastic Potential Energy we get,

 \sf{U = \:   \frac{1}{2}  \times Stress \times  Strain \times  Volume}

 \sf{U = \:  \frac{1}{2}   \times 2 \times  {10}^{8}  \times  {10}^{ - 3} \times ( A × l )}

[Since, Volume = Area × Length]

 \sf{U = \:  {10}^{5} \:  \times (4 \times  {10}^{ - 6}  \times 2) }

 \sf{U = \:  8 \:  \times   \:  {10}^{ - 1} }

\boxed{\sf{U = \: 0.8J }}

Hence, the required Elastic Potential Energy is 0.8J

#answerwithquality #BAL

Similar questions